Juan Diego Toscano, Sahand Hajifar, Christian Oswaldo Segura, Luis Javier Segura, Hongyue Sun
{"title":"基于迁移学习的3D打印掌指关节和指间关节变形分析","authors":"Juan Diego Toscano, Sahand Hajifar, Christian Oswaldo Segura, Luis Javier Segura, Hongyue Sun","doi":"10.1115/msec2021-63623","DOIUrl":null,"url":null,"abstract":"\n A cast/brace is a tight garment that restricts the movement and provides support to an injured zone. Traditional casts/braces suffer from material wastage, discomfort, patient dissatisfaction, odor, unnecessary weight, and dangerous extraction procedures. These issues can be solved partially by constructing the casts/braces via 3D printing. Toward this end, we print the personalized metacarpal casts/braces (MCB) via fused deposition modeling (FDM), and investigate their mechanical properties to ensure the desired functionality. However, printing the full-size MCB is time-consuming (takes more than 11 hours in our design), making it hard to collect a sufficient data set for the mechanical properties investigation. Here, we explore the utilization of reduced-size MCB to facilitate the analysis of full-size MCB via transfer learning. In particular, three critical process variables (i.e., raster width, layer height, and extrusion temperature) were varied, and a universal testing machine was used to measure the total deformation of the MCB. We then perform the prediction of the deformation in full-size MCB with transfer learning of data from reduced-size MCB and limited data from full-size MCB. From the case study, the transfer learning approach can reduce the needs of data collection in the time-consuming full-size MCB by leveraging the information from reduced-size MCB.","PeriodicalId":56519,"journal":{"name":"光:先进制造(英文)","volume":"161 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Deformation Analysis of 3D Printed Metacarpophalangeal and Interphalangeal Joints via Transfer Learning\",\"authors\":\"Juan Diego Toscano, Sahand Hajifar, Christian Oswaldo Segura, Luis Javier Segura, Hongyue Sun\",\"doi\":\"10.1115/msec2021-63623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A cast/brace is a tight garment that restricts the movement and provides support to an injured zone. Traditional casts/braces suffer from material wastage, discomfort, patient dissatisfaction, odor, unnecessary weight, and dangerous extraction procedures. These issues can be solved partially by constructing the casts/braces via 3D printing. Toward this end, we print the personalized metacarpal casts/braces (MCB) via fused deposition modeling (FDM), and investigate their mechanical properties to ensure the desired functionality. However, printing the full-size MCB is time-consuming (takes more than 11 hours in our design), making it hard to collect a sufficient data set for the mechanical properties investigation. Here, we explore the utilization of reduced-size MCB to facilitate the analysis of full-size MCB via transfer learning. In particular, three critical process variables (i.e., raster width, layer height, and extrusion temperature) were varied, and a universal testing machine was used to measure the total deformation of the MCB. We then perform the prediction of the deformation in full-size MCB with transfer learning of data from reduced-size MCB and limited data from full-size MCB. From the case study, the transfer learning approach can reduce the needs of data collection in the time-consuming full-size MCB by leveraging the information from reduced-size MCB.\",\"PeriodicalId\":56519,\"journal\":{\"name\":\"光:先进制造(英文)\",\"volume\":\"161 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"光:先进制造(英文)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.1115/msec2021-63623\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"光:先进制造(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1115/msec2021-63623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deformation Analysis of 3D Printed Metacarpophalangeal and Interphalangeal Joints via Transfer Learning
A cast/brace is a tight garment that restricts the movement and provides support to an injured zone. Traditional casts/braces suffer from material wastage, discomfort, patient dissatisfaction, odor, unnecessary weight, and dangerous extraction procedures. These issues can be solved partially by constructing the casts/braces via 3D printing. Toward this end, we print the personalized metacarpal casts/braces (MCB) via fused deposition modeling (FDM), and investigate their mechanical properties to ensure the desired functionality. However, printing the full-size MCB is time-consuming (takes more than 11 hours in our design), making it hard to collect a sufficient data set for the mechanical properties investigation. Here, we explore the utilization of reduced-size MCB to facilitate the analysis of full-size MCB via transfer learning. In particular, three critical process variables (i.e., raster width, layer height, and extrusion temperature) were varied, and a universal testing machine was used to measure the total deformation of the MCB. We then perform the prediction of the deformation in full-size MCB with transfer learning of data from reduced-size MCB and limited data from full-size MCB. From the case study, the transfer learning approach can reduce the needs of data collection in the time-consuming full-size MCB by leveraging the information from reduced-size MCB.