用于高维线性模型测试的自动偏差校正

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY
Jing Zhou, G. Claeskens
{"title":"用于高维线性模型测试的自动偏差校正","authors":"Jing Zhou, G. Claeskens","doi":"10.1111/stan.12274","DOIUrl":null,"url":null,"abstract":"Hypothesis testing is challenging due to the test statistic's complicated asymptotic distribution when it is based on a regularized estimator in high dimensions. We propose a robust testing framework for ℓ1$$ {\\ell}_1 $$ ‐regularized M‐estimators to cope with non‐Gaussian distributed regression errors, using the robust approximate message passing algorithm. The proposed framework enjoys an automatically built‐in bias correction and is applicable with general convex nondifferentiable loss functions which also allows inference when the focus is a conditional quantile instead of the mean of the response. The estimator compares numerically well with the debiased and desparsified approaches while using the least squares loss function. The use of the Huber loss function demonstrates that the proposed construction provides stable confidence intervals under different regression error distributions.","PeriodicalId":51178,"journal":{"name":"Statistica Neerlandica","volume":"57 1","pages":"71 - 98"},"PeriodicalIF":1.4000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic bias correction for testing in high‐dimensional linear models\",\"authors\":\"Jing Zhou, G. Claeskens\",\"doi\":\"10.1111/stan.12274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hypothesis testing is challenging due to the test statistic's complicated asymptotic distribution when it is based on a regularized estimator in high dimensions. We propose a robust testing framework for ℓ1$$ {\\\\ell}_1 $$ ‐regularized M‐estimators to cope with non‐Gaussian distributed regression errors, using the robust approximate message passing algorithm. The proposed framework enjoys an automatically built‐in bias correction and is applicable with general convex nondifferentiable loss functions which also allows inference when the focus is a conditional quantile instead of the mean of the response. The estimator compares numerically well with the debiased and desparsified approaches while using the least squares loss function. The use of the Huber loss function demonstrates that the proposed construction provides stable confidence intervals under different regression error distributions.\",\"PeriodicalId\":51178,\"journal\":{\"name\":\"Statistica Neerlandica\",\"volume\":\"57 1\",\"pages\":\"71 - 98\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistica Neerlandica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1111/stan.12274\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica Neerlandica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/stan.12274","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

假设检验是基于高维正则化估计量的,由于检验统计量的渐近分布复杂,所以假设检验具有挑战性。利用鲁棒近似消息传递算法,提出了一种用于处理非高斯分布回归误差的1 $$ {\ell}_1 $$正则化M估计的鲁棒测试框架。所提出的框架具有自动内置的偏差校正功能,适用于一般凸不可微损失函数,当焦点是条件分位而不是响应的平均值时,也允许进行推理。当使用最小二乘损失函数时,该估计方法与去偏和去杂化方法在数值上有很好的比较。Huber损失函数的使用表明,所提出的构造在不同的回归误差分布下提供了稳定的置信区间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic bias correction for testing in high‐dimensional linear models
Hypothesis testing is challenging due to the test statistic's complicated asymptotic distribution when it is based on a regularized estimator in high dimensions. We propose a robust testing framework for ℓ1$$ {\ell}_1 $$ ‐regularized M‐estimators to cope with non‐Gaussian distributed regression errors, using the robust approximate message passing algorithm. The proposed framework enjoys an automatically built‐in bias correction and is applicable with general convex nondifferentiable loss functions which also allows inference when the focus is a conditional quantile instead of the mean of the response. The estimator compares numerically well with the debiased and desparsified approaches while using the least squares loss function. The use of the Huber loss function demonstrates that the proposed construction provides stable confidence intervals under different regression error distributions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistica Neerlandica
Statistica Neerlandica 数学-统计学与概率论
CiteScore
2.60
自引率
6.70%
发文量
26
审稿时长
>12 weeks
期刊介绍: Statistica Neerlandica has been the journal of the Netherlands Society for Statistics and Operations Research since 1946. It covers all areas of statistics, from theoretical to applied, with a special emphasis on mathematical statistics, statistics for the behavioural sciences and biostatistics. This wide scope is reflected by the expertise of the journal’s editors representing these areas. The diverse editorial board is committed to a fast and fair reviewing process, and will judge submissions on quality, correctness, relevance and originality. Statistica Neerlandica encourages transparency and reproducibility, and offers online resources to make data, code, simulation results and other additional materials publicly available.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信