A. Bombarda, S. Bonfanti, A. Gargantini, Yu Lei, Feng Duan
{"title":"RATE:一种基于模型的测试方法,结合了模型细化和测试执行","authors":"A. Bombarda, S. Bonfanti, A. Gargantini, Yu Lei, Feng Duan","doi":"10.1002/stvr.1835","DOIUrl":null,"url":null,"abstract":"In this paper, we present an approach to conformance testing based on abstract state machines (ASMs) that combines model refinement and test execution (RATE) and its application to three case studies. The RATE approach consists in generating test sequences from ASMs and checking the conformance between code and models in multiple iterations. The process follows these steps: (1) model the system as an abstract state machine; (2) validate and verify the model; (3) generate test sequences automatically from the ASM model; (4) execute the tests over the implementation and compute the code coverage; (5) if the coverage is below the desired threshold, then refine the abstract state machine model to add the uncovered functionalities and return to step 2. We have applied the proposed approach in three case studies: a traffic light control system (TLCS), the IEEE 11073‐20601 personal health device (PHD) protocol, and the mechanical ventilator Milano (MVM). By applying RATE, at each refinement level, we have increased code coverage and identified some faults or conformance errors for all the case studies. The fault detection capability of RATE has also been confirmed by mutation analysis, in which we have highlighted that, many mutants can be killed even by the most abstract models.","PeriodicalId":49506,"journal":{"name":"Software Testing Verification & Reliability","volume":"49 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RATE: A model‐based testing approach that combines model refinement and test execution\",\"authors\":\"A. Bombarda, S. Bonfanti, A. Gargantini, Yu Lei, Feng Duan\",\"doi\":\"10.1002/stvr.1835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present an approach to conformance testing based on abstract state machines (ASMs) that combines model refinement and test execution (RATE) and its application to three case studies. The RATE approach consists in generating test sequences from ASMs and checking the conformance between code and models in multiple iterations. The process follows these steps: (1) model the system as an abstract state machine; (2) validate and verify the model; (3) generate test sequences automatically from the ASM model; (4) execute the tests over the implementation and compute the code coverage; (5) if the coverage is below the desired threshold, then refine the abstract state machine model to add the uncovered functionalities and return to step 2. We have applied the proposed approach in three case studies: a traffic light control system (TLCS), the IEEE 11073‐20601 personal health device (PHD) protocol, and the mechanical ventilator Milano (MVM). By applying RATE, at each refinement level, we have increased code coverage and identified some faults or conformance errors for all the case studies. The fault detection capability of RATE has also been confirmed by mutation analysis, in which we have highlighted that, many mutants can be killed even by the most abstract models.\",\"PeriodicalId\":49506,\"journal\":{\"name\":\"Software Testing Verification & Reliability\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Software Testing Verification & Reliability\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1002/stvr.1835\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software Testing Verification & Reliability","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/stvr.1835","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
RATE: A model‐based testing approach that combines model refinement and test execution
In this paper, we present an approach to conformance testing based on abstract state machines (ASMs) that combines model refinement and test execution (RATE) and its application to three case studies. The RATE approach consists in generating test sequences from ASMs and checking the conformance between code and models in multiple iterations. The process follows these steps: (1) model the system as an abstract state machine; (2) validate and verify the model; (3) generate test sequences automatically from the ASM model; (4) execute the tests over the implementation and compute the code coverage; (5) if the coverage is below the desired threshold, then refine the abstract state machine model to add the uncovered functionalities and return to step 2. We have applied the proposed approach in three case studies: a traffic light control system (TLCS), the IEEE 11073‐20601 personal health device (PHD) protocol, and the mechanical ventilator Milano (MVM). By applying RATE, at each refinement level, we have increased code coverage and identified some faults or conformance errors for all the case studies. The fault detection capability of RATE has also been confirmed by mutation analysis, in which we have highlighted that, many mutants can be killed even by the most abstract models.
期刊介绍:
The journal is the premier outlet for research results on the subjects of testing, verification and reliability. Readers will find useful research on issues pertaining to building better software and evaluating it.
The journal is unique in its emphasis on theoretical foundations and applications to real-world software development. The balance of theory, empirical work, and practical applications provide readers with better techniques for testing, verifying and improving the reliability of software.
The journal targets researchers, practitioners, educators and students that have a vested interest in results generated by high-quality testing, verification and reliability modeling and evaluation of software. Topics of special interest include, but are not limited to:
-New criteria for software testing and verification
-Application of existing software testing and verification techniques to new types of software, including web applications, web services, embedded software, aspect-oriented software, and software architectures
-Model based testing
-Formal verification techniques such as model-checking
-Comparison of testing and verification techniques
-Measurement of and metrics for testing, verification and reliability
-Industrial experience with cutting edge techniques
-Descriptions and evaluations of commercial and open-source software testing tools
-Reliability modeling, measurement and application
-Testing and verification of software security
-Automated test data generation
-Process issues and methods
-Non-functional testing