{"title":"关于berge环的Gyárfás, Lehel, Sárközy和Schelp猜想的证明","authors":"G. Omidi","doi":"10.1017/S0963548320000243","DOIUrl":null,"url":null,"abstract":"<jats:p>It has been conjectured that, for any fixed <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548320000243_inline1.png\" /><jats:tex-math>\\[{\\text{r}} \\geqslant 2\\]</jats:tex-math></jats:alternatives></jats:inline-formula> and sufficiently large <jats:italic>n</jats:italic>, there is a monochromatic Hamiltonian Berge-cycle in every <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548320000243_inline2.png\" /><jats:tex-math>\\[({\\text{r}} - 1)\\]</jats:tex-math></jats:alternatives></jats:inline-formula>-colouring of the edges of <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548320000243_inline3.png\" /><jats:tex-math>\\[{\\text{K}}_{\\text{n}}^{\\text{r}}\\]</jats:tex-math></jats:alternatives></jats:inline-formula>, the complete <jats:italic>r</jats:italic>-uniform hypergraph on <jats:italic>n</jats:italic> vertices. In this paper we prove this conjecture.</jats:p>","PeriodicalId":10513,"journal":{"name":"Combinatorics, Probability & Computing","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2021-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A proof of a conjecture of Gyárfás, Lehel, Sárközy and Schelp on Berge-cycles\",\"authors\":\"G. Omidi\",\"doi\":\"10.1017/S0963548320000243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:p>It has been conjectured that, for any fixed <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548320000243_inline1.png\\\" /><jats:tex-math>\\\\[{\\\\text{r}} \\\\geqslant 2\\\\]</jats:tex-math></jats:alternatives></jats:inline-formula> and sufficiently large <jats:italic>n</jats:italic>, there is a monochromatic Hamiltonian Berge-cycle in every <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548320000243_inline2.png\\\" /><jats:tex-math>\\\\[({\\\\text{r}} - 1)\\\\]</jats:tex-math></jats:alternatives></jats:inline-formula>-colouring of the edges of <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548320000243_inline3.png\\\" /><jats:tex-math>\\\\[{\\\\text{K}}_{\\\\text{n}}^{\\\\text{r}}\\\\]</jats:tex-math></jats:alternatives></jats:inline-formula>, the complete <jats:italic>r</jats:italic>-uniform hypergraph on <jats:italic>n</jats:italic> vertices. In this paper we prove this conjecture.</jats:p>\",\"PeriodicalId\":10513,\"journal\":{\"name\":\"Combinatorics, Probability & Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorics, Probability & Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/S0963548320000243\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability & Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0963548320000243","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
A proof of a conjecture of Gyárfás, Lehel, Sárközy and Schelp on Berge-cycles
It has been conjectured that, for any fixed \[{\text{r}} \geqslant 2\] and sufficiently large n, there is a monochromatic Hamiltonian Berge-cycle in every \[({\text{r}} - 1)\]-colouring of the edges of \[{\text{K}}_{\text{n}}^{\text{r}}\], the complete r-uniform hypergraph on n vertices. In this paper we prove this conjecture.
期刊介绍:
Published bimonthly, Combinatorics, Probability & Computing is devoted to the three areas of combinatorics, probability theory and theoretical computer science. Topics covered include classical and algebraic graph theory, extremal set theory, matroid theory, probabilistic methods and random combinatorial structures; combinatorial probability and limit theorems for random combinatorial structures; the theory of algorithms (including complexity theory), randomised algorithms, probabilistic analysis of algorithms, computational learning theory and optimisation.