{"title":"具有完全排列的裂纹的固体中的波衰减","authors":"Liyong Yang, J. Turner","doi":"10.1121/1.1861092","DOIUrl":null,"url":null,"abstract":"The theory of wave propagation and scattering in cracked media is applied to study the wave attenuations in an isotropic solid medium containing perfectly aligned penny-shaped microcracks. The unit normals of all cracks are assumed parallel to a given direction. The wave scattering model is formulated using an anisotropic Green’s dyadic approach. Explicit expressions are derived for attenuations of the three wave modes in terms of the microcrack density. Numerical results are presented and discussed. In particular, comparisons of the attenuation results presented in this letter with previous results for the Rayleigh limit are given.","PeriodicalId":87384,"journal":{"name":"Acoustics research letters online : ARLO","volume":"13 1","pages":"99-105"},"PeriodicalIF":0.0000,"publicationDate":"2005-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Wave attenuations in solids with perfectly aligned cracks\",\"authors\":\"Liyong Yang, J. Turner\",\"doi\":\"10.1121/1.1861092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The theory of wave propagation and scattering in cracked media is applied to study the wave attenuations in an isotropic solid medium containing perfectly aligned penny-shaped microcracks. The unit normals of all cracks are assumed parallel to a given direction. The wave scattering model is formulated using an anisotropic Green’s dyadic approach. Explicit expressions are derived for attenuations of the three wave modes in terms of the microcrack density. Numerical results are presented and discussed. In particular, comparisons of the attenuation results presented in this letter with previous results for the Rayleigh limit are given.\",\"PeriodicalId\":87384,\"journal\":{\"name\":\"Acoustics research letters online : ARLO\",\"volume\":\"13 1\",\"pages\":\"99-105\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acoustics research letters online : ARLO\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1121/1.1861092\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acoustics research letters online : ARLO","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1121/1.1861092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Wave attenuations in solids with perfectly aligned cracks
The theory of wave propagation and scattering in cracked media is applied to study the wave attenuations in an isotropic solid medium containing perfectly aligned penny-shaped microcracks. The unit normals of all cracks are assumed parallel to a given direction. The wave scattering model is formulated using an anisotropic Green’s dyadic approach. Explicit expressions are derived for attenuations of the three wave modes in terms of the microcrack density. Numerical results are presented and discussed. In particular, comparisons of the attenuation results presented in this letter with previous results for the Rayleigh limit are given.