线性运动硬化拟静态塑性的最优控制II:正则化与可微性

Pub Date : 2015-10-29 DOI:10.4171/ZAA/1546
G. Wachsmuth
{"title":"线性运动硬化拟静态塑性的最优控制II:正则化与可微性","authors":"G. Wachsmuth","doi":"10.4171/ZAA/1546","DOIUrl":null,"url":null,"abstract":"We consider an optimal control problem governed by an evolution variational inequality arising in quasistatic plasticity with linear kinematic hardening. A regularization of the time-discrete problem is derived. The regularized forward problem can be interpreted as system of coupled quasilinear PDEs whose principal parts depend on the gradient of the state. We show the Fréchet differentiability of the solution map of this quasilinear system. As a consequence, we obtain a first order necessary optimality system. Moreover, we address certain convergence properties of the regularization.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Optimal Control of Quasistatic Plasticity with Linear Kinematic Hardening II: Regularization and Differentiability\",\"authors\":\"G. Wachsmuth\",\"doi\":\"10.4171/ZAA/1546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider an optimal control problem governed by an evolution variational inequality arising in quasistatic plasticity with linear kinematic hardening. A regularization of the time-discrete problem is derived. The regularized forward problem can be interpreted as system of coupled quasilinear PDEs whose principal parts depend on the gradient of the state. We show the Fréchet differentiability of the solution map of this quasilinear system. As a consequence, we obtain a first order necessary optimality system. Moreover, we address certain convergence properties of the regularization.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2015-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/ZAA/1546\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/ZAA/1546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

考虑一类由演化变分不等式支配的准静态塑性线性运动硬化的最优控制问题。导出了时间离散问题的正则化。正则化前向问题可以解释为一个耦合的拟线性偏微分方程系统,其主要部分依赖于状态梯度。我们证明了该拟线性系统解映射的fracimet可微性。因此,我们得到了一个一阶必要最优系统。此外,我们还讨论了正则化的某些收敛性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Optimal Control of Quasistatic Plasticity with Linear Kinematic Hardening II: Regularization and Differentiability
We consider an optimal control problem governed by an evolution variational inequality arising in quasistatic plasticity with linear kinematic hardening. A regularization of the time-discrete problem is derived. The regularized forward problem can be interpreted as system of coupled quasilinear PDEs whose principal parts depend on the gradient of the state. We show the Fréchet differentiability of the solution map of this quasilinear system. As a consequence, we obtain a first order necessary optimality system. Moreover, we address certain convergence properties of the regularization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信