基于R包的加性贝叶斯网络建模

IF 5.4 2区 计算机科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Gilles Kratzer, F. Lewis, A. Comin, M. Pittavino, R. Furrer
{"title":"基于R包的加性贝叶斯网络建模","authors":"Gilles Kratzer, F. Lewis, A. Comin, M. Pittavino, R. Furrer","doi":"10.18637/jss.v105.i08","DOIUrl":null,"url":null,"abstract":"The R package abn is designed to fit additive Bayesian network models to observational datasets and contains routines to score Bayesian networks based on Bayesian or information theoretic formulations of generalized linear models. It is equipped with exact search and greedy search algorithms to select the best network, and supports continuous, discrete and count data in the same model and input of prior knowledge at a structural level. The Bayesian implementation supports random effects to control for one-layer clustering. In this paper, we give an overview of the methodology and illustrate the package’s functionality using a veterinary dataset concerned with respiratory diseases in commercial swine production.","PeriodicalId":17237,"journal":{"name":"Journal of Statistical Software","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Additive Bayesian Network Modeling with the R Package abn\",\"authors\":\"Gilles Kratzer, F. Lewis, A. Comin, M. Pittavino, R. Furrer\",\"doi\":\"10.18637/jss.v105.i08\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The R package abn is designed to fit additive Bayesian network models to observational datasets and contains routines to score Bayesian networks based on Bayesian or information theoretic formulations of generalized linear models. It is equipped with exact search and greedy search algorithms to select the best network, and supports continuous, discrete and count data in the same model and input of prior knowledge at a structural level. The Bayesian implementation supports random effects to control for one-layer clustering. In this paper, we give an overview of the methodology and illustrate the package’s functionality using a veterinary dataset concerned with respiratory diseases in commercial swine production.\",\"PeriodicalId\":17237,\"journal\":{\"name\":\"Journal of Statistical Software\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Software\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.18637/jss.v105.i08\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Software","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.18637/jss.v105.i08","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

R包abn旨在将加性贝叶斯网络模型拟合到观测数据集,并包含基于广义线性模型的贝叶斯或信息论公式对贝叶斯网络进行评分的例程。它采用精确搜索和贪婪搜索算法来选择最佳网络,支持同一模型中的连续、离散和计数数据,并在结构层面上输入先验知识。贝叶斯实现支持随机效应来控制单层聚类。在本文中,我们概述了该方法,并使用与商业养猪生产中呼吸道疾病有关的兽医数据集说明了该包装的功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Additive Bayesian Network Modeling with the R Package abn
The R package abn is designed to fit additive Bayesian network models to observational datasets and contains routines to score Bayesian networks based on Bayesian or information theoretic formulations of generalized linear models. It is equipped with exact search and greedy search algorithms to select the best network, and supports continuous, discrete and count data in the same model and input of prior knowledge at a structural level. The Bayesian implementation supports random effects to control for one-layer clustering. In this paper, we give an overview of the methodology and illustrate the package’s functionality using a veterinary dataset concerned with respiratory diseases in commercial swine production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Statistical Software
Journal of Statistical Software 工程技术-计算机:跨学科应用
CiteScore
10.70
自引率
1.70%
发文量
40
审稿时长
6-12 weeks
期刊介绍: The Journal of Statistical Software (JSS) publishes open-source software and corresponding reproducible articles discussing all aspects of the design, implementation, documentation, application, evaluation, comparison, maintainance and distribution of software dedicated to improvement of state-of-the-art in statistical computing in all areas of empirical research. Open-source code and articles are jointly reviewed and published in this journal and should be accessible to a broad community of practitioners, teachers, and researchers in the field of statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信