变纤维毡方向下多层编织e -玻璃/环氧树脂的力学性能

Q4 Biochemistry, Genetics and Molecular Biology
Saif Aldeen Ghafel H., Nasri Salh M. Namer, Abdul Jabbar H. Ali
{"title":"变纤维毡方向下多层编织e -玻璃/环氧树脂的力学性能","authors":"Saif Aldeen Ghafel H., Nasri Salh M. Namer, Abdul Jabbar H. Ali","doi":"10.51173/jt.v5i2.1176","DOIUrl":null,"url":null,"abstract":"In this research, the epoxy resin was reinforced by (16 layers) of E-glass fiber woven mat (0^°/90^°) with 50% weight fraction and total thickness (3mm). Using 16 layers was due to the absence of any previous study that used this number of layers at this thickness. It is considered a modern study of this style because of the rapid development in modern engineering industries that required lightweight composite materials with high strength and small thickness, which are used in the aerospace industry aviation and other precision engineering industries. The composite material was cut into angles (0^°,5^°,15^°,30^°,45^°) by using CNC water jet culling machine. The tensile test was used to determine the strength of a material ratio to the fiber's direction and by using Vickers hardness to determine the hardness of composite and pure epoxy. The result of pure epoxy (matrix) has the lowest value in tensile strength (σ_UTS), Yong's modulus (E), 0.2% proof yield stress (σ_(0.2%)), modulus of toughness and toughness when compared with a composite material with adding 16 layers of \"E-glass fibers\". The direction of the fibers with (5^°) of composite has the highest strength, Young's modulus, and 0.2% proof yield stress when compared with (0^°,15^°,30^°,45^°) and pure epoxy. The improvement strength (10.8, 11.8, 9.8, 8.5, 8.3 times) at (0^°,5^°,15^°,30^°,45^°) respectively when compared with pure epoxy. The hardness of composite material improved (220%) relative to pure epoxy. The results show that the best improvement of composite material with fiber's angle (5^°) has the highest results compared with pure epoxy.","PeriodicalId":39617,"journal":{"name":"Journal of Biomolecular Techniques","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical Properties of Multi-Layer Woven E-Glass/Epoxy in Variable Fiber-Mat Directions\",\"authors\":\"Saif Aldeen Ghafel H., Nasri Salh M. Namer, Abdul Jabbar H. Ali\",\"doi\":\"10.51173/jt.v5i2.1176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research, the epoxy resin was reinforced by (16 layers) of E-glass fiber woven mat (0^°/90^°) with 50% weight fraction and total thickness (3mm). Using 16 layers was due to the absence of any previous study that used this number of layers at this thickness. It is considered a modern study of this style because of the rapid development in modern engineering industries that required lightweight composite materials with high strength and small thickness, which are used in the aerospace industry aviation and other precision engineering industries. The composite material was cut into angles (0^°,5^°,15^°,30^°,45^°) by using CNC water jet culling machine. The tensile test was used to determine the strength of a material ratio to the fiber's direction and by using Vickers hardness to determine the hardness of composite and pure epoxy. The result of pure epoxy (matrix) has the lowest value in tensile strength (σ_UTS), Yong's modulus (E), 0.2% proof yield stress (σ_(0.2%)), modulus of toughness and toughness when compared with a composite material with adding 16 layers of \\\"E-glass fibers\\\". The direction of the fibers with (5^°) of composite has the highest strength, Young's modulus, and 0.2% proof yield stress when compared with (0^°,15^°,30^°,45^°) and pure epoxy. The improvement strength (10.8, 11.8, 9.8, 8.5, 8.3 times) at (0^°,5^°,15^°,30^°,45^°) respectively when compared with pure epoxy. The hardness of composite material improved (220%) relative to pure epoxy. The results show that the best improvement of composite material with fiber's angle (5^°) has the highest results compared with pure epoxy.\",\"PeriodicalId\":39617,\"journal\":{\"name\":\"Journal of Biomolecular Techniques\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomolecular Techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51173/jt.v5i2.1176\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51173/jt.v5i2.1176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用e -玻璃纤维编织垫(0°/90°)增强环氧树脂(16层),重量分数为50%,总厚度为3mm。使用16层是由于之前没有任何研究在这个厚度下使用这么多的层数。由于现代工程工业的快速发展,需要高强度、小厚度的轻量化复合材料,在航空航天工业和其他精密工程工业中得到应用,因此被认为是对这种风格的现代研究。利用数控水射流切割机将复合材料切割成0°、5°、15°、30°、45°的角度。拉伸试验用维氏硬度法测定了材料的强度与纤维方向的比值,并用维氏硬度法测定了复合树脂和纯环氧树脂的硬度。与添加16层“E-玻璃纤维”的复合材料相比,纯环氧树脂(基体)的抗拉强度(σ_UTS)、杨氏模量(E)、0.2%抗屈服应力(σ_(0.2%))、韧性模量和韧性均最低。与(0^°,15^°,30^°,45^°)和纯环氧树脂相比,(5^°)方向的纤维具有最高的强度、杨氏模量和0.2%的抗屈服应力。在(0^°、5^°、15^°、30^°、45^°)处,强度分别提高10.8、11.8、9.8、8.5、8.3倍。与纯环氧树脂相比,复合材料的硬度提高220%。结果表明,与纯环氧树脂相比,纤维角(5^°)的复合材料改善效果最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanical Properties of Multi-Layer Woven E-Glass/Epoxy in Variable Fiber-Mat Directions
In this research, the epoxy resin was reinforced by (16 layers) of E-glass fiber woven mat (0^°/90^°) with 50% weight fraction and total thickness (3mm). Using 16 layers was due to the absence of any previous study that used this number of layers at this thickness. It is considered a modern study of this style because of the rapid development in modern engineering industries that required lightweight composite materials with high strength and small thickness, which are used in the aerospace industry aviation and other precision engineering industries. The composite material was cut into angles (0^°,5^°,15^°,30^°,45^°) by using CNC water jet culling machine. The tensile test was used to determine the strength of a material ratio to the fiber's direction and by using Vickers hardness to determine the hardness of composite and pure epoxy. The result of pure epoxy (matrix) has the lowest value in tensile strength (σ_UTS), Yong's modulus (E), 0.2% proof yield stress (σ_(0.2%)), modulus of toughness and toughness when compared with a composite material with adding 16 layers of "E-glass fibers". The direction of the fibers with (5^°) of composite has the highest strength, Young's modulus, and 0.2% proof yield stress when compared with (0^°,15^°,30^°,45^°) and pure epoxy. The improvement strength (10.8, 11.8, 9.8, 8.5, 8.3 times) at (0^°,5^°,15^°,30^°,45^°) respectively when compared with pure epoxy. The hardness of composite material improved (220%) relative to pure epoxy. The results show that the best improvement of composite material with fiber's angle (5^°) has the highest results compared with pure epoxy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biomolecular Techniques
Journal of Biomolecular Techniques Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
2.50
自引率
0.00%
发文量
9
期刊介绍: The Journal of Biomolecular Techniques is a peer-reviewed publication issued five times a year by the Association of Biomolecular Resource Facilities. The Journal was established to promote the central role biotechnology plays in contemporary research activities, to disseminate information among biomolecular resource facilities, and to communicate the biotechnology research conducted by the Association’s Research Groups and members, as well as other investigators.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信