基于聚类和级联SSD的动画字符检测算法

Sci. Program. Pub Date : 2022-01-07 DOI:10.1155/2022/4223295
Yuan-Hui Wang
{"title":"基于聚类和级联SSD的动画字符检测算法","authors":"Yuan-Hui Wang","doi":"10.1155/2022/4223295","DOIUrl":null,"url":null,"abstract":"With the evolution of the Internet and information technology, the era of big data is a new digital one. Accordingly, animation IP has been more and more widely welcomed and concerned with the continuous development of the domestic and international animation industry. Hence, animation video analysis will be a good landing application for computers. This paper proposes an algorithm based on clustering and cascaded SSD for object detection of animation characters in the big data environment. In the training process, the improved classification Loss function based on Focal Loss and Truncated Gradient was used to enhance the initial detection effect. In the detection phase, this algorithm designs a small target enhanced detection module cascaded with an SSD network. In this way, the high-level features corresponding to the small target region can be extracted separately to detect small targets, which can effectively enhance the detection effect of small targets. In order to further improve the effect of small target detection, the regional candidate box is reconstructed by a k-means clustering algorithm to improve the detection accuracy of the algorithm. Experimental results demonstrate that this method can effectively detect animation characters, and performance indicators are better than other existing algorithms.","PeriodicalId":21628,"journal":{"name":"Sci. Program.","volume":"16 1","pages":"4223295:1-4223295:10"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Animation Character Detection Algorithm Based on Clustering and Cascaded SSD\",\"authors\":\"Yuan-Hui Wang\",\"doi\":\"10.1155/2022/4223295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the evolution of the Internet and information technology, the era of big data is a new digital one. Accordingly, animation IP has been more and more widely welcomed and concerned with the continuous development of the domestic and international animation industry. Hence, animation video analysis will be a good landing application for computers. This paper proposes an algorithm based on clustering and cascaded SSD for object detection of animation characters in the big data environment. In the training process, the improved classification Loss function based on Focal Loss and Truncated Gradient was used to enhance the initial detection effect. In the detection phase, this algorithm designs a small target enhanced detection module cascaded with an SSD network. In this way, the high-level features corresponding to the small target region can be extracted separately to detect small targets, which can effectively enhance the detection effect of small targets. In order to further improve the effect of small target detection, the regional candidate box is reconstructed by a k-means clustering algorithm to improve the detection accuracy of the algorithm. Experimental results demonstrate that this method can effectively detect animation characters, and performance indicators are better than other existing algorithms.\",\"PeriodicalId\":21628,\"journal\":{\"name\":\"Sci. Program.\",\"volume\":\"16 1\",\"pages\":\"4223295:1-4223295:10\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sci. Program.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/4223295\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sci. Program.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/4223295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着互联网和信息技术的发展,大数据时代已经进入新的数字化时代。相应地,随着国内外动漫产业的不断发展,动漫IP也越来越受到广泛的欢迎和关注。因此,动画视频分析将是计算机的一个很好的落地应用。本文提出了一种基于聚类和级联SSD的大数据环境下动画人物目标检测算法。在训练过程中,采用改进的基于Focal Loss和Truncated Gradient的分类Loss函数来增强初始检测效果。在检测阶段,该算法设计了一个与SSD网络级联的小目标增强检测模块。这样就可以单独提取小目标区域对应的高级特征来检测小目标,可以有效增强小目标的检测效果。为了进一步提高小目标检测效果,采用k-means聚类算法重构区域候选盒,提高算法的检测精度。实验结果表明,该方法可以有效地检测动画人物,性能指标优于现有的其他算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Animation Character Detection Algorithm Based on Clustering and Cascaded SSD
With the evolution of the Internet and information technology, the era of big data is a new digital one. Accordingly, animation IP has been more and more widely welcomed and concerned with the continuous development of the domestic and international animation industry. Hence, animation video analysis will be a good landing application for computers. This paper proposes an algorithm based on clustering and cascaded SSD for object detection of animation characters in the big data environment. In the training process, the improved classification Loss function based on Focal Loss and Truncated Gradient was used to enhance the initial detection effect. In the detection phase, this algorithm designs a small target enhanced detection module cascaded with an SSD network. In this way, the high-level features corresponding to the small target region can be extracted separately to detect small targets, which can effectively enhance the detection effect of small targets. In order to further improve the effect of small target detection, the regional candidate box is reconstructed by a k-means clustering algorithm to improve the detection accuracy of the algorithm. Experimental results demonstrate that this method can effectively detect animation characters, and performance indicators are better than other existing algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信