求解椭圆型BVP的Nakao方法及二阶区间差分格式

A. Marciniak
{"title":"求解椭圆型BVP的Nakao方法及二阶区间差分格式","authors":"A. Marciniak","doi":"10.12921/CMST.2019.0000016","DOIUrl":null,"url":null,"abstract":": In the paper we compare Nakao’s method to our interval difference scheme of second order. Repeating some computational examples of Nakao, we have observed that our implementation of his method gives better results. Moreover, it appears that the presented interval difference scheme gives better enclosures of exact solutions than Nakao’s method. W˛e also point out that the considered interval method can be used to solve the Poisson equation with Dirichlet’s condition, for which Nakao’s method is not applicable.","PeriodicalId":10561,"journal":{"name":"computational methods in science and technology","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Nakao’s method and an interval difference scheme of second order for solving the elliptic BVP\",\"authors\":\"A. Marciniak\",\"doi\":\"10.12921/CMST.2019.0000016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": In the paper we compare Nakao’s method to our interval difference scheme of second order. Repeating some computational examples of Nakao, we have observed that our implementation of his method gives better results. Moreover, it appears that the presented interval difference scheme gives better enclosures of exact solutions than Nakao’s method. W˛e also point out that the considered interval method can be used to solve the Poisson equation with Dirichlet’s condition, for which Nakao’s method is not applicable.\",\"PeriodicalId\":10561,\"journal\":{\"name\":\"computational methods in science and technology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"computational methods in science and technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12921/CMST.2019.0000016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"computational methods in science and technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12921/CMST.2019.0000016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文将Nakao的方法与我们的二阶区间差分格式进行了比较。重复Nakao的一些计算例子,我们观察到我们实现他的方法得到了更好的结果。此外,与Nakao的方法相比,所提出的区间差分格式给出了更好的精确解的包合。W还指出考虑区间法可用于求解Dirichlet条件下的泊松方程,而中尾法不适用于此泊松方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nakao’s method and an interval difference scheme of second order for solving the elliptic BVP
: In the paper we compare Nakao’s method to our interval difference scheme of second order. Repeating some computational examples of Nakao, we have observed that our implementation of his method gives better results. Moreover, it appears that the presented interval difference scheme gives better enclosures of exact solutions than Nakao’s method. W˛e also point out that the considered interval method can be used to solve the Poisson equation with Dirichlet’s condition, for which Nakao’s method is not applicable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信