{"title":"基于大数据分析的智慧城市公共管理可持续发展优化方法","authors":"Wen Wang, Lin Li","doi":"10.4018/ijdwm.322757","DOIUrl":null,"url":null,"abstract":"With the acceleration of the urbanization process, the traditional urban management has become increasingly unable to meet the needs of urban management and development. At the same time, with the rapid development of artificial intelligence (AI) and big data (BD), the use of AI and BD to analyze cities has been gradually emerging. Therefore, this paper used AI and BD to study the optimization method of sustainable development of smart city public management. The research showed that the respondents in N, Z, and S cities were 60.67%, 60.07%, and 60.31% satisfied with the handling of events by urban public management subjects, respectively. The experts' evaluation scores on the feasibility and effectiveness of urban public management optimization strategies were 88.79 and 92.82, respectively. The public's satisfaction with the smart city public management subject's handling of events was still not high enough. The optimization strategy for sustainable development of smart city public management proposed in this paper with BD had certain practical value.","PeriodicalId":54963,"journal":{"name":"International Journal of Data Warehousing and Mining","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization Method for Sustainable Development of Smart City Public Management Based on Big Data Analysis\",\"authors\":\"Wen Wang, Lin Li\",\"doi\":\"10.4018/ijdwm.322757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the acceleration of the urbanization process, the traditional urban management has become increasingly unable to meet the needs of urban management and development. At the same time, with the rapid development of artificial intelligence (AI) and big data (BD), the use of AI and BD to analyze cities has been gradually emerging. Therefore, this paper used AI and BD to study the optimization method of sustainable development of smart city public management. The research showed that the respondents in N, Z, and S cities were 60.67%, 60.07%, and 60.31% satisfied with the handling of events by urban public management subjects, respectively. The experts' evaluation scores on the feasibility and effectiveness of urban public management optimization strategies were 88.79 and 92.82, respectively. The public's satisfaction with the smart city public management subject's handling of events was still not high enough. The optimization strategy for sustainable development of smart city public management proposed in this paper with BD had certain practical value.\",\"PeriodicalId\":54963,\"journal\":{\"name\":\"International Journal of Data Warehousing and Mining\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Data Warehousing and Mining\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.4018/ijdwm.322757\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Warehousing and Mining","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/ijdwm.322757","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Optimization Method for Sustainable Development of Smart City Public Management Based on Big Data Analysis
With the acceleration of the urbanization process, the traditional urban management has become increasingly unable to meet the needs of urban management and development. At the same time, with the rapid development of artificial intelligence (AI) and big data (BD), the use of AI and BD to analyze cities has been gradually emerging. Therefore, this paper used AI and BD to study the optimization method of sustainable development of smart city public management. The research showed that the respondents in N, Z, and S cities were 60.67%, 60.07%, and 60.31% satisfied with the handling of events by urban public management subjects, respectively. The experts' evaluation scores on the feasibility and effectiveness of urban public management optimization strategies were 88.79 and 92.82, respectively. The public's satisfaction with the smart city public management subject's handling of events was still not high enough. The optimization strategy for sustainable development of smart city public management proposed in this paper with BD had certain practical value.
期刊介绍:
The International Journal of Data Warehousing and Mining (IJDWM) disseminates the latest international research findings in the areas of data management and analyzation. IJDWM provides a forum for state-of-the-art developments and research, as well as current innovative activities focusing on the integration between the fields of data warehousing and data mining. Emphasizing applicability to real world problems, this journal meets the needs of both academic researchers and practicing IT professionals.The journal is devoted to the publications of high quality papers on theoretical developments and practical applications in data warehousing and data mining. Original research papers, state-of-the-art reviews, and technical notes are invited for publications. The journal accepts paper submission of any work relevant to data warehousing and data mining. Special attention will be given to papers focusing on mining of data from data warehouses; integration of databases, data warehousing, and data mining; and holistic approaches to mining and archiving