紧黎曼流形上严格抛物方程的galerkin型方法

M. Graf, M. Kunzinger, Darko Mitrovich
{"title":"紧黎曼流形上严格抛物方程的galerkin型方法","authors":"M. Graf, M. Kunzinger, Darko Mitrovich","doi":"10.2422/2036-2145.202006_016","DOIUrl":null,"url":null,"abstract":". We prove existence of weak solutions to the Cauchy problem cor- responding to various strictly parabolic equations on a compact Riemannian manifold ( M,g ). This also includes strictly parabolic equations with stochas- tic forcing with linear diffusion. Existence is proved through a variant of the Galerkin method and can be used to construct a convergent finite element method.","PeriodicalId":8132,"journal":{"name":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","volume":"57 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Galerkin-type methods for strictly parabolic equations on compact Riemannian manifolds\",\"authors\":\"M. Graf, M. Kunzinger, Darko Mitrovich\",\"doi\":\"10.2422/2036-2145.202006_016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We prove existence of weak solutions to the Cauchy problem cor- responding to various strictly parabolic equations on a compact Riemannian manifold ( M,g ). This also includes strictly parabolic equations with stochas- tic forcing with linear diffusion. Existence is proved through a variant of the Galerkin method and can be used to construct a convergent finite element method.\",\"PeriodicalId\":8132,\"journal\":{\"name\":\"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2422/2036-2145.202006_016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2422/2036-2145.202006_016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

. 证明了紧黎曼流形(M,g)上响应各种严格抛物型方程的柯西问题弱解的存在性。这也包括具有线性扩散的随机强迫的严格抛物方程。通过伽辽金方法的一种变体证明了其存在性,并可用于构造收敛有限元方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Galerkin-type methods for strictly parabolic equations on compact Riemannian manifolds
. We prove existence of weak solutions to the Cauchy problem cor- responding to various strictly parabolic equations on a compact Riemannian manifold ( M,g ). This also includes strictly parabolic equations with stochas- tic forcing with linear diffusion. Existence is proved through a variant of the Galerkin method and can be used to construct a convergent finite element method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信