收敛Virasoro融合核族和非多项式$q$-Askey格式

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
J. Lenells, J. Roussillon
{"title":"收敛Virasoro融合核族和非多项式$q$-Askey格式","authors":"J. Lenells, J. Roussillon","doi":"10.4310/atmp.2021.v25.n6.a5","DOIUrl":null,"url":null,"abstract":"We study the recently introduced family of confluent Virasoro fusion kernels $\\mathcal{C}_k(b,\\boldsymbol{\\theta},\\sigma_s,\\nu)$. We study their eigenfunction properties and show that they can be viewed as non-polynomial generalizations of both the continuous dual $q$-Hahn and the big $q$-Jacobi polynomials. More precisely, we prove that: (i) $\\mathcal{C}_k$ is a joint eigenfunction of four different difference operators for any positive integer $k$, (ii) $\\mathcal{C}_k$ degenerates to the continuous dual $q$-Hahn polynomials when $\\nu$ is suitably discretized, and (iii) $\\mathcal{C}_k$ degenerates to the big $q$-Jacobi polynomials when $\\sigma_s$ is suitably discretized. These observations lead us to propose the existence of a non-polynomial generalization of the $q$-Askey scheme. The top member of this non-polynomial scheme is the Virasoro fusion kernel (or, equivalently, Ruijsenaars' hypergeometric function), and its first confluence is given by the $\\mathcal{C}_k$.","PeriodicalId":50848,"journal":{"name":"Advances in Theoretical and Mathematical Physics","volume":"51 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The family of confluent Virasoro fusion kernels and a non-polynomial $q$-Askey scheme\",\"authors\":\"J. Lenells, J. Roussillon\",\"doi\":\"10.4310/atmp.2021.v25.n6.a5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the recently introduced family of confluent Virasoro fusion kernels $\\\\mathcal{C}_k(b,\\\\boldsymbol{\\\\theta},\\\\sigma_s,\\\\nu)$. We study their eigenfunction properties and show that they can be viewed as non-polynomial generalizations of both the continuous dual $q$-Hahn and the big $q$-Jacobi polynomials. More precisely, we prove that: (i) $\\\\mathcal{C}_k$ is a joint eigenfunction of four different difference operators for any positive integer $k$, (ii) $\\\\mathcal{C}_k$ degenerates to the continuous dual $q$-Hahn polynomials when $\\\\nu$ is suitably discretized, and (iii) $\\\\mathcal{C}_k$ degenerates to the big $q$-Jacobi polynomials when $\\\\sigma_s$ is suitably discretized. These observations lead us to propose the existence of a non-polynomial generalization of the $q$-Askey scheme. The top member of this non-polynomial scheme is the Virasoro fusion kernel (or, equivalently, Ruijsenaars' hypergeometric function), and its first confluence is given by the $\\\\mathcal{C}_k$.\",\"PeriodicalId\":50848,\"journal\":{\"name\":\"Advances in Theoretical and Mathematical Physics\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2020-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Theoretical and Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.4310/atmp.2021.v25.n6.a5\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.4310/atmp.2021.v25.n6.a5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 1

摘要

我们研究了最近引入的汇合Virasoro融合核族$\mathcal{C}_k(b,\boldsymbol{\theta},\sigma_s,\nu)$。我们研究了它们的特征函数性质,并证明它们可以看作是连续对偶$q$ -Hahn多项式和大的$q$ -Jacobi多项式的非多项式推广。更准确地说,我们证明了:(i) $\mathcal{C}_k$是任意正整数$k$的四种不同差分算子的联合特征函数,(ii) $\mathcal{C}_k$在$\nu$适当离散时退化为连续对偶$q$ -Hahn多项式,(iii) $\mathcal{C}_k$在$\sigma_s$适当离散时退化为大$q$ -Jacobi多项式。这些观察结果使我们提出$q$ -Askey方案的非多项式推广的存在性。该非多项式格式的顶层成员是Virasoro融合核(或等价的rujsenaars的超几何函数),其第一次汇合由$\mathcal{C}_k$给出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The family of confluent Virasoro fusion kernels and a non-polynomial $q$-Askey scheme
We study the recently introduced family of confluent Virasoro fusion kernels $\mathcal{C}_k(b,\boldsymbol{\theta},\sigma_s,\nu)$. We study their eigenfunction properties and show that they can be viewed as non-polynomial generalizations of both the continuous dual $q$-Hahn and the big $q$-Jacobi polynomials. More precisely, we prove that: (i) $\mathcal{C}_k$ is a joint eigenfunction of four different difference operators for any positive integer $k$, (ii) $\mathcal{C}_k$ degenerates to the continuous dual $q$-Hahn polynomials when $\nu$ is suitably discretized, and (iii) $\mathcal{C}_k$ degenerates to the big $q$-Jacobi polynomials when $\sigma_s$ is suitably discretized. These observations lead us to propose the existence of a non-polynomial generalization of the $q$-Askey scheme. The top member of this non-polynomial scheme is the Virasoro fusion kernel (or, equivalently, Ruijsenaars' hypergeometric function), and its first confluence is given by the $\mathcal{C}_k$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Theoretical and Mathematical Physics
Advances in Theoretical and Mathematical Physics 物理-物理:粒子与场物理
CiteScore
2.20
自引率
6.70%
发文量
0
审稿时长
>12 weeks
期刊介绍: Advances in Theoretical and Mathematical Physics is a bimonthly publication of the International Press, publishing papers on all areas in which theoretical physics and mathematics interact with each other.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信