一种新的自构造进化算法用于tsk型模糊模型设计

Sheng-Fuu Lin, Jyun-Wei Chang, Yi-Chang Cheng, Yung-Chi Hsu
{"title":"一种新的自构造进化算法用于tsk型模糊模型设计","authors":"Sheng-Fuu Lin, Jyun-Wei Chang, Yi-Chang Cheng, Yung-Chi Hsu","doi":"10.1109/CEC.2010.5586205","DOIUrl":null,"url":null,"abstract":"In this paper, a novel self-constructing evolution algorithm (SCEA) for TSK-type fuzzy model (TFM) design is proposed. The proposed SCEA method is different from the traditional genetic algorithms (GA). A chromosome of the population in GA represents a full solution and only one population presents all solutions. Our method applies a population to evaluate a partial solution locally, and several populations to construct the full solution. Thus, a chromosome represents only partial solution. The proposed SCEA uses the self-constructing learning algorithm to construct the TFM automatically that is based on the input data to decide the input partition. And we also adopted the sequence search-based dynamic evolution (SSDE) method to perform parameter learning. Simulation results have shown that the proposed SCEA method obtains better performance than some existing models.","PeriodicalId":6344,"journal":{"name":"2009 IEEE Congress on Evolutionary Computation","volume":"1 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel self-constructing evolution algorithm for TSK-type fuzzy model design\",\"authors\":\"Sheng-Fuu Lin, Jyun-Wei Chang, Yi-Chang Cheng, Yung-Chi Hsu\",\"doi\":\"10.1109/CEC.2010.5586205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a novel self-constructing evolution algorithm (SCEA) for TSK-type fuzzy model (TFM) design is proposed. The proposed SCEA method is different from the traditional genetic algorithms (GA). A chromosome of the population in GA represents a full solution and only one population presents all solutions. Our method applies a population to evaluate a partial solution locally, and several populations to construct the full solution. Thus, a chromosome represents only partial solution. The proposed SCEA uses the self-constructing learning algorithm to construct the TFM automatically that is based on the input data to decide the input partition. And we also adopted the sequence search-based dynamic evolution (SSDE) method to perform parameter learning. Simulation results have shown that the proposed SCEA method obtains better performance than some existing models.\",\"PeriodicalId\":6344,\"journal\":{\"name\":\"2009 IEEE Congress on Evolutionary Computation\",\"volume\":\"1 1\",\"pages\":\"1-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Congress on Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2010.5586205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2010.5586205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种用于tsk型模糊模型设计的自构造进化算法(SCEA)。该方法不同于传统的遗传算法(GA)。遗传算法中群体的一条染色体代表一个完整解,只有一个群体代表所有解。我们的方法用一个总体来评估局部解,用几个总体来构造完整解。因此,染色体只代表部分解。本文提出的SCEA采用自构造学习算法,根据输入数据自动构造TFM来确定输入分区。采用基于序列搜索的动态进化(SSDE)方法进行参数学习。仿真结果表明,该方法比现有的一些模型具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel self-constructing evolution algorithm for TSK-type fuzzy model design
In this paper, a novel self-constructing evolution algorithm (SCEA) for TSK-type fuzzy model (TFM) design is proposed. The proposed SCEA method is different from the traditional genetic algorithms (GA). A chromosome of the population in GA represents a full solution and only one population presents all solutions. Our method applies a population to evaluate a partial solution locally, and several populations to construct the full solution. Thus, a chromosome represents only partial solution. The proposed SCEA uses the self-constructing learning algorithm to construct the TFM automatically that is based on the input data to decide the input partition. And we also adopted the sequence search-based dynamic evolution (SSDE) method to perform parameter learning. Simulation results have shown that the proposed SCEA method obtains better performance than some existing models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信