非参数多元条件分布与分位数回归

Keming Yu, Xiaochen (Michael) Sun, G. Mitra
{"title":"非参数多元条件分布与分位数回归","authors":"Keming Yu, Xiaochen (Michael) Sun, G. Mitra","doi":"10.2139/ssrn.1264946","DOIUrl":null,"url":null,"abstract":"In nonparametric multivariate regression analysis, one usually seeks methods to reduce the dimensionality of the regression function to bypass the difficulty caused by the curse of dimensionality. We study nonparametric estimation of multivariate conditional distribution and quantile regression via local univariate quadratic estimation of partial derivatives of bivariate copulas. Without restricting the form of underlying regression function or using dimensional reduction, we show that a d-dimensional multivariate conditional distribution and quantile regression could be estimated by d(d 1)/2 times of univariate smoothers. The asymptotic bias and variance as well as smoothing parameter selection method are derived. Simulations show that the method works quite well. The techniques are illustrated by application to exchange rate data.","PeriodicalId":11744,"journal":{"name":"ERN: Nonparametric Methods (Topic)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2008-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Nonparametric Multivariate Conditional Distribution and Quantile Regression\",\"authors\":\"Keming Yu, Xiaochen (Michael) Sun, G. Mitra\",\"doi\":\"10.2139/ssrn.1264946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In nonparametric multivariate regression analysis, one usually seeks methods to reduce the dimensionality of the regression function to bypass the difficulty caused by the curse of dimensionality. We study nonparametric estimation of multivariate conditional distribution and quantile regression via local univariate quadratic estimation of partial derivatives of bivariate copulas. Without restricting the form of underlying regression function or using dimensional reduction, we show that a d-dimensional multivariate conditional distribution and quantile regression could be estimated by d(d 1)/2 times of univariate smoothers. The asymptotic bias and variance as well as smoothing parameter selection method are derived. Simulations show that the method works quite well. The techniques are illustrated by application to exchange rate data.\",\"PeriodicalId\":11744,\"journal\":{\"name\":\"ERN: Nonparametric Methods (Topic)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Nonparametric Methods (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.1264946\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Nonparametric Methods (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1264946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在非参数多元回归分析中,人们通常寻求降低回归函数维数的方法,以绕过维数诅咒带来的困难。通过对二元copula偏导数的局部单变量二次估计,研究了多元条件分布的非参数估计和分位数回归。在不限制基本回归函数的形式或使用降维的情况下,我们证明了d维多元条件分布和分位数回归可以通过d(d1)/2倍的单变量平滑来估计。推导了渐近偏差和方差以及平滑参数选择方法。仿真结果表明,该方法效果良好。通过对汇率数据的应用说明了这些技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonparametric Multivariate Conditional Distribution and Quantile Regression
In nonparametric multivariate regression analysis, one usually seeks methods to reduce the dimensionality of the regression function to bypass the difficulty caused by the curse of dimensionality. We study nonparametric estimation of multivariate conditional distribution and quantile regression via local univariate quadratic estimation of partial derivatives of bivariate copulas. Without restricting the form of underlying regression function or using dimensional reduction, we show that a d-dimensional multivariate conditional distribution and quantile regression could be estimated by d(d 1)/2 times of univariate smoothers. The asymptotic bias and variance as well as smoothing parameter selection method are derived. Simulations show that the method works quite well. The techniques are illustrated by application to exchange rate data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信