正则图的负特征值

Wen-Ching Winnie Li
{"title":"正则图的负特征值","authors":"Wen-Ching Winnie Li","doi":"10.1016/S0764-4442(01)02155-3","DOIUrl":null,"url":null,"abstract":"<div><p>In this Note we prove that if {<em>G</em><sub><em>n</em></sub>} is a sequence of connected <em>k</em>-regular graphs in which the length of odd cycles approaches infinity as <em>n</em>→∞, then the <span><math><mtext>lim</mtext><mspace></mspace><mtext>sup</mtext></math></span> of the smallest eigenvalue of <em>G</em><sub><em>n</em></sub> greater than −<em>k</em> is at most <span><math><mtext>−2</mtext><mtext>k−1</mtext></math></span> as <em>n</em> tends to infinity.</p></div>","PeriodicalId":100300,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","volume":"333 10","pages":"Pages 907-912"},"PeriodicalIF":0.0000,"publicationDate":"2001-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02155-3","citationCount":"11","resultStr":"{\"title\":\"On negative eigenvalues of regular graphs\",\"authors\":\"Wen-Ching Winnie Li\",\"doi\":\"10.1016/S0764-4442(01)02155-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this Note we prove that if {<em>G</em><sub><em>n</em></sub>} is a sequence of connected <em>k</em>-regular graphs in which the length of odd cycles approaches infinity as <em>n</em>→∞, then the <span><math><mtext>lim</mtext><mspace></mspace><mtext>sup</mtext></math></span> of the smallest eigenvalue of <em>G</em><sub><em>n</em></sub> greater than −<em>k</em> is at most <span><math><mtext>−2</mtext><mtext>k−1</mtext></math></span> as <em>n</em> tends to infinity.</p></div>\",\"PeriodicalId\":100300,\"journal\":{\"name\":\"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics\",\"volume\":\"333 10\",\"pages\":\"Pages 907-912\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02155-3\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0764444201021553\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0764444201021553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文证明了如果{Gn}是一个连通的k正则图序列,当n→∞时,其奇环长度趋近于无穷,那么当n趋于无穷时,Gn大于- k的最小特征值的极限不超过- 2k−1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On negative eigenvalues of regular graphs

In this Note we prove that if {Gn} is a sequence of connected k-regular graphs in which the length of odd cycles approaches infinity as n→∞, then the limsup of the smallest eigenvalue of Gn greater than −k is at most −2k−1 as n tends to infinity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信