映射空间的相对Gottlieb群及其有理上同调

Q3 Mathematics
A. Zaim
{"title":"映射空间的相对Gottlieb群及其有理上同调","authors":"A. Zaim","doi":"10.15673/tmgc.v15i1.2196","DOIUrl":null,"url":null,"abstract":"Let f:X →Y be a map of simply connected CW-complexes of finite type. Put maxπ★(Y)⊗Q = max{ i | πi(Y)⊗Q≠0 }. In this paper we compute the relative Gottlieb groups of f when X is an F0-space and Y is a product of odd spheres. Also, under reasonable hypothesis, we determine these groups when X is a product of odd spheres and Y is an F0-space. As a consequence, we show that the rationalized G-sequence associated to f splits into a short exact sequence. Finally, we prove that the rational cohomology of map(X,Y;f) is infinite dimensional whenever maxπ★(Y)⊗Q is even.","PeriodicalId":36547,"journal":{"name":"Proceedings of the International Geometry Center","volume":"4160 1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relative Gottlieb groups of mapping spaces and their rational cohomology\",\"authors\":\"A. Zaim\",\"doi\":\"10.15673/tmgc.v15i1.2196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let f:X →Y be a map of simply connected CW-complexes of finite type. Put maxπ★(Y)⊗Q = max{ i | πi(Y)⊗Q≠0 }. In this paper we compute the relative Gottlieb groups of f when X is an F0-space and Y is a product of odd spheres. Also, under reasonable hypothesis, we determine these groups when X is a product of odd spheres and Y is an F0-space. As a consequence, we show that the rationalized G-sequence associated to f splits into a short exact sequence. Finally, we prove that the rational cohomology of map(X,Y;f) is infinite dimensional whenever maxπ★(Y)⊗Q is even.\",\"PeriodicalId\":36547,\"journal\":{\"name\":\"Proceedings of the International Geometry Center\",\"volume\":\"4160 1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Geometry Center\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15673/tmgc.v15i1.2196\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Geometry Center","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15673/tmgc.v15i1.2196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

设f:X→Y是有限型单连通cw -复形的映射。设maxπ★(Y)⊗Q = max{i | πi(Y)⊗Q≠0}。本文计算了当X是f0空间,Y是奇球积时f的相对Gottlieb群。同样,在合理的假设下,当X是奇球积,Y是f0空间时,我们确定了这些群。因此,我们证明了与f相关的有理g序列分裂成一个短的精确序列。最后证明了当maxπ★(Y)⊗Q为偶时,映射(X,Y;f)的有理上同调是无限维的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relative Gottlieb groups of mapping spaces and their rational cohomology
Let f:X →Y be a map of simply connected CW-complexes of finite type. Put maxπ★(Y)⊗Q = max{ i | πi(Y)⊗Q≠0 }. In this paper we compute the relative Gottlieb groups of f when X is an F0-space and Y is a product of odd spheres. Also, under reasonable hypothesis, we determine these groups when X is a product of odd spheres and Y is an F0-space. As a consequence, we show that the rationalized G-sequence associated to f splits into a short exact sequence. Finally, we prove that the rational cohomology of map(X,Y;f) is infinite dimensional whenever maxπ★(Y)⊗Q is even.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Proceedings of the International Geometry Center
Proceedings of the International Geometry Center Mathematics-Geometry and Topology
CiteScore
1.00
自引率
0.00%
发文量
14
审稿时长
3 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信