常曲率空间上的台球及约束系统的生成函数

IF 0.7 Q4 MECHANICS
B. Jovanović
{"title":"常曲率空间上的台球及约束系统的生成函数","authors":"B. Jovanović","doi":"10.2298/TAM170523005J","DOIUrl":null,"url":null,"abstract":"In this note we consider a method of generating functions for systems with constraints and, as an example, we prove that the billiard mappings for billiards on the Euclidean space, sphere, and the Lobachevsky space are sympletic. Further, by taking a quadratic generating function we get the skew-hodograph mapping introduced by Moser and Veselov, which relates the ellipsoidal billiards in the Euclidean space with the Heisenberg magnetic spin chain model on a sphere. We define analogous mapping for the ellipsoidal billiard on the Lobachevsky space. It relates the billiard with the Heisenberg spin model on the light-like cone in the Lorentz–Poincare–Minkowski space.","PeriodicalId":44059,"journal":{"name":"Theoretical and Applied Mechanics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Billiards on constant curvature spaces and generating functions for systems with constraints\",\"authors\":\"B. Jovanović\",\"doi\":\"10.2298/TAM170523005J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this note we consider a method of generating functions for systems with constraints and, as an example, we prove that the billiard mappings for billiards on the Euclidean space, sphere, and the Lobachevsky space are sympletic. Further, by taking a quadratic generating function we get the skew-hodograph mapping introduced by Moser and Veselov, which relates the ellipsoidal billiards in the Euclidean space with the Heisenberg magnetic spin chain model on a sphere. We define analogous mapping for the ellipsoidal billiard on the Lobachevsky space. It relates the billiard with the Heisenberg spin model on the light-like cone in the Lorentz–Poincare–Minkowski space.\",\"PeriodicalId\":44059,\"journal\":{\"name\":\"Theoretical and Applied Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Applied Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/TAM170523005J\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/TAM170523005J","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 4

摘要

在这篇文章中,我们考虑了一种有约束系统的生成函数的方法,作为一个例子,我们证明了欧几里得空间、球面和Lobachevsky空间上的台球映射是辛的。进一步,利用二次生成函数,我们得到了由Moser和Veselov引入的将欧几里得空间中的椭球球与球面上的Heisenberg磁自旋链模型联系起来的斜矢图映射。我们定义了Lobachevsky空间上椭球台球的类似映射。它将台球与洛伦兹-庞加莱-闵可夫斯基空间中类光锥上的海森堡自旋模型联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Billiards on constant curvature spaces and generating functions for systems with constraints
In this note we consider a method of generating functions for systems with constraints and, as an example, we prove that the billiard mappings for billiards on the Euclidean space, sphere, and the Lobachevsky space are sympletic. Further, by taking a quadratic generating function we get the skew-hodograph mapping introduced by Moser and Veselov, which relates the ellipsoidal billiards in the Euclidean space with the Heisenberg magnetic spin chain model on a sphere. We define analogous mapping for the ellipsoidal billiard on the Lobachevsky space. It relates the billiard with the Heisenberg spin model on the light-like cone in the Lorentz–Poincare–Minkowski space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
4
审稿时长
32 weeks
期刊介绍: Theoretical and Applied Mechanics (TAM) invites submission of original scholarly work in all fields of theoretical and applied mechanics. TAM features selected high quality research articles that represent the broad spectrum of interest in mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信