基于禁忌的通信信道性能改进反向传播算法

{"title":"基于禁忌的通信信道性能改进反向传播算法","authors":"","doi":"10.1109/TENCON.2008.4766514","DOIUrl":null,"url":null,"abstract":"This paper presents a new approach to equalization of communication channels using artificial neural networks (ANNs). A novel method of training the ANNs using Tabu based back propagation (TBBP) algorithm is described. The algorithm uses the Tabu search (TS) to improve the performance of the equalizer as it searches for global minima which is many a time escaped while back propagation (BP) algorithm is applied for this purpose. From the results it can be noted that the proposed algorithm improves the classification capability of the ANNs in differentiating the received data.","PeriodicalId":22230,"journal":{"name":"TENCON 2008 - 2008 IEEE Region 10 Conference","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Tabu based back propagation algorithm for performance improvement in communication channels\",\"authors\":\"\",\"doi\":\"10.1109/TENCON.2008.4766514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new approach to equalization of communication channels using artificial neural networks (ANNs). A novel method of training the ANNs using Tabu based back propagation (TBBP) algorithm is described. The algorithm uses the Tabu search (TS) to improve the performance of the equalizer as it searches for global minima which is many a time escaped while back propagation (BP) algorithm is applied for this purpose. From the results it can be noted that the proposed algorithm improves the classification capability of the ANNs in differentiating the received data.\",\"PeriodicalId\":22230,\"journal\":{\"name\":\"TENCON 2008 - 2008 IEEE Region 10 Conference\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TENCON 2008 - 2008 IEEE Region 10 Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TENCON.2008.4766514\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TENCON 2008 - 2008 IEEE Region 10 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2008.4766514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种利用人工神经网络实现通信信道均衡的新方法。提出了一种基于禁忌的反向传播(TBBP)算法训练人工神经网络的新方法。该算法使用禁忌搜索(TS)来提高均衡器的性能,因为它搜索全局最小值,而反向传播(BP)算法用于此目的时多次逃脱。从结果可以看出,该算法提高了人工神经网络对接收数据的分类能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tabu based back propagation algorithm for performance improvement in communication channels
This paper presents a new approach to equalization of communication channels using artificial neural networks (ANNs). A novel method of training the ANNs using Tabu based back propagation (TBBP) algorithm is described. The algorithm uses the Tabu search (TS) to improve the performance of the equalizer as it searches for global minima which is many a time escaped while back propagation (BP) algorithm is applied for this purpose. From the results it can be noted that the proposed algorithm improves the classification capability of the ANNs in differentiating the received data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信