{"title":"Banach空间中富广义非扩张映射不动点逼近的Krasnoselskii迭代过程","authors":"E. Şimşek, I. Yildirim","doi":"10.15330/cmp.14.1.86-94","DOIUrl":null,"url":null,"abstract":"We consider the class of enriched generalized nonexpansive mappings which includes enriched Kannan mappings, nonexpansive enriched Chatterjea mappings and enriched mappings. We prove some fixed point theorems for enriched generalized nonexpansive mappings using Krasnoselskii iteration process in Banach spaces. We also give stability result for such mappings under some appropriate conditions. The results presented in this paper improve and extend some works in literature.","PeriodicalId":42912,"journal":{"name":"Carpathian Mathematical Publications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Krasnoselskii iteration process for approximating fixed points of enriched generalized nonexpansive mappings in Banach spaces\",\"authors\":\"E. Şimşek, I. Yildirim\",\"doi\":\"10.15330/cmp.14.1.86-94\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the class of enriched generalized nonexpansive mappings which includes enriched Kannan mappings, nonexpansive enriched Chatterjea mappings and enriched mappings. We prove some fixed point theorems for enriched generalized nonexpansive mappings using Krasnoselskii iteration process in Banach spaces. We also give stability result for such mappings under some appropriate conditions. The results presented in this paper improve and extend some works in literature.\",\"PeriodicalId\":42912,\"journal\":{\"name\":\"Carpathian Mathematical Publications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carpathian Mathematical Publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15330/cmp.14.1.86-94\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/cmp.14.1.86-94","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Krasnoselskii iteration process for approximating fixed points of enriched generalized nonexpansive mappings in Banach spaces
We consider the class of enriched generalized nonexpansive mappings which includes enriched Kannan mappings, nonexpansive enriched Chatterjea mappings and enriched mappings. We prove some fixed point theorems for enriched generalized nonexpansive mappings using Krasnoselskii iteration process in Banach spaces. We also give stability result for such mappings under some appropriate conditions. The results presented in this paper improve and extend some works in literature.