桥接链接和查询意图,以增强网络搜索

Na Dai, Xiaoguang Qi, Brian D. Davison
{"title":"桥接链接和查询意图,以增强网络搜索","authors":"Na Dai, Xiaoguang Qi, Brian D. Davison","doi":"10.1145/1995966.1995973","DOIUrl":null,"url":null,"abstract":"Understanding query intent is essential to generating appropriate rankings for users. Existing methods have provided customized rankings to answer queries with different intent. While previous methods have shown improvement over their non-discriminating counterparts, the web authors' intent when creating a hyperlink is seldom taken into consideration. To mitigate this gap, we categorize hyperlinks into two types that are reasonably comparable to query intent, i.e., links describing the target page's identity and links describing the target page's content. We argue that emphasis on one type of link when ranking documents can benefit the retrieval for that type of query. We start by presenting a link intent classification approach based on the link context representations that captures evidence from anchors, target pages, and their associated links, and then introduce our enhanced retrieval model that incorporates link intent into the estimation of anchor text importance. Comparative experiments on two large scale web corpora demonstrate the efficacy of our approaches.","PeriodicalId":91270,"journal":{"name":"HT ... : the proceedings of the ... ACM Conference on Hypertext and Social Media. ACM Conference on Hypertext and Social Media","volume":"70 1","pages":"17-26"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Bridging link and query intent to enhance web search\",\"authors\":\"Na Dai, Xiaoguang Qi, Brian D. Davison\",\"doi\":\"10.1145/1995966.1995973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding query intent is essential to generating appropriate rankings for users. Existing methods have provided customized rankings to answer queries with different intent. While previous methods have shown improvement over their non-discriminating counterparts, the web authors' intent when creating a hyperlink is seldom taken into consideration. To mitigate this gap, we categorize hyperlinks into two types that are reasonably comparable to query intent, i.e., links describing the target page's identity and links describing the target page's content. We argue that emphasis on one type of link when ranking documents can benefit the retrieval for that type of query. We start by presenting a link intent classification approach based on the link context representations that captures evidence from anchors, target pages, and their associated links, and then introduce our enhanced retrieval model that incorporates link intent into the estimation of anchor text importance. Comparative experiments on two large scale web corpora demonstrate the efficacy of our approaches.\",\"PeriodicalId\":91270,\"journal\":{\"name\":\"HT ... : the proceedings of the ... ACM Conference on Hypertext and Social Media. ACM Conference on Hypertext and Social Media\",\"volume\":\"70 1\",\"pages\":\"17-26\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HT ... : the proceedings of the ... ACM Conference on Hypertext and Social Media. ACM Conference on Hypertext and Social Media\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1995966.1995973\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HT ... : the proceedings of the ... ACM Conference on Hypertext and Social Media. ACM Conference on Hypertext and Social Media","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1995966.1995973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

理解查询意图对于为用户生成适当的排名至关重要。现有的方法提供了定制的排名来回答不同意图的查询。虽然以前的方法已经比非歧视性的方法有所改进,但web作者在创建超链接时的意图很少被考虑在内。为了减轻这种差距,我们将超链接分为两种类型,这两种类型与查询意图相当,即描述目标页面标识的链接和描述目标页面内容的链接。我们认为,在对文档进行排序时,强调一种类型的链接有利于对该类型查询的检索。我们首先提出了一种基于链接上下文表示的链接意图分类方法,该方法从锚点、目标页面及其相关链接中获取证据,然后介绍了我们的增强检索模型,该模型将链接意图纳入锚文本重要性的估计中。在两个大型网络语料库上的对比实验证明了我们的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bridging link and query intent to enhance web search
Understanding query intent is essential to generating appropriate rankings for users. Existing methods have provided customized rankings to answer queries with different intent. While previous methods have shown improvement over their non-discriminating counterparts, the web authors' intent when creating a hyperlink is seldom taken into consideration. To mitigate this gap, we categorize hyperlinks into two types that are reasonably comparable to query intent, i.e., links describing the target page's identity and links describing the target page's content. We argue that emphasis on one type of link when ranking documents can benefit the retrieval for that type of query. We start by presenting a link intent classification approach based on the link context representations that captures evidence from anchors, target pages, and their associated links, and then introduce our enhanced retrieval model that incorporates link intent into the estimation of anchor text importance. Comparative experiments on two large scale web corpora demonstrate the efficacy of our approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信