用机器学习技术预测每日和每月的汇率

Vasilios Plakandaras, Theophilos Papadimitriou, Periklis Gogas
{"title":"用机器学习技术预测每日和每月的汇率","authors":"Vasilios Plakandaras, Theophilos Papadimitriou, Periklis Gogas","doi":"10.2139/ssrn.2990344","DOIUrl":null,"url":null,"abstract":"We combine signal processing to machine learning methodologies by introducing a hybrid Ensemble Empirical Mode Decomposition (EEMD), Multivariate Adaptive Regression Splines (MARS) and Support Vector Regression (SVR) model in order to forecast the monthly and daily Euro (EUR)/United States Dollar (USD), USD/Japanese Yen (JPY), Australian Dollar (AUD)/Norwegian Krone (NOK), New Zealand Dollar (NZD)/Brazilian Real (BRL) and South African Rand (ZAR)/Philippine Peso (PHP) exchange rates. After the decomposition with EEMD of the original exchange rate series into a smoothed and a fluctuation component, MARS selects the most informative input datasets from the plethora of variables included in our initial data set. The selected variables are fed into two distinctive SVR models for forecasting each component separately one period ahead for daily and monthly data. The summation of the two forecasted components provides exchange rate forecasts. The above implementation exhibits superior forecasting ability in exchange rate forecasting compared to various models. Overall the proposed model a) is a combination of empirically proven effective techniques in forecasting time series, b) is data driven, c) relies on minimum initial assumptions and d) provides a structural aspect of the forecasting problem.","PeriodicalId":20949,"journal":{"name":"PSN: Exchange Rates & Currency (Comparative) (Topic)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":"{\"title\":\"Forecasting Daily and Monthly Exchange Rates with Machine Learning Techniques\",\"authors\":\"Vasilios Plakandaras, Theophilos Papadimitriou, Periklis Gogas\",\"doi\":\"10.2139/ssrn.2990344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We combine signal processing to machine learning methodologies by introducing a hybrid Ensemble Empirical Mode Decomposition (EEMD), Multivariate Adaptive Regression Splines (MARS) and Support Vector Regression (SVR) model in order to forecast the monthly and daily Euro (EUR)/United States Dollar (USD), USD/Japanese Yen (JPY), Australian Dollar (AUD)/Norwegian Krone (NOK), New Zealand Dollar (NZD)/Brazilian Real (BRL) and South African Rand (ZAR)/Philippine Peso (PHP) exchange rates. After the decomposition with EEMD of the original exchange rate series into a smoothed and a fluctuation component, MARS selects the most informative input datasets from the plethora of variables included in our initial data set. The selected variables are fed into two distinctive SVR models for forecasting each component separately one period ahead for daily and monthly data. The summation of the two forecasted components provides exchange rate forecasts. The above implementation exhibits superior forecasting ability in exchange rate forecasting compared to various models. Overall the proposed model a) is a combination of empirically proven effective techniques in forecasting time series, b) is data driven, c) relies on minimum initial assumptions and d) provides a structural aspect of the forecasting problem.\",\"PeriodicalId\":20949,\"journal\":{\"name\":\"PSN: Exchange Rates & Currency (Comparative) (Topic)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"45\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PSN: Exchange Rates & Currency (Comparative) (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2990344\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PSN: Exchange Rates & Currency (Comparative) (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2990344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

摘要

我们通过引入混合集成经验模式分解(EEMD)、多元自适应样条回归(MARS)和支持向量回归(SVR)模型,将信号处理与机器学习方法相结合,以预测每月和每天的欧元(EUR)/美元(USD)、美元/日元(JPY)、澳元(AUD)/挪威克朗(NOK)、新西兰元(NZD)/巴西雷亚尔(BRL)和南非兰特(ZAR)/菲律宾比索(PHP)汇率。在用EEMD将原始汇率序列分解为平滑分量和波动分量后,MARS从初始数据集中包含的大量变量中选择信息量最大的输入数据集。所选择的变量被输入到两个不同的SVR模型中,分别预测每个组成部分的每日和月度数据。两个预测组成部分的总和提供了汇率预测。与各种模型相比,上述实现在汇率预测中表现出优越的预测能力。总的来说,所提出的模型a)是经验证明的预测时间序列的有效技术的组合,b)是数据驱动的,c)依赖于最小的初始假设,d)提供了预测问题的结构方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Forecasting Daily and Monthly Exchange Rates with Machine Learning Techniques
We combine signal processing to machine learning methodologies by introducing a hybrid Ensemble Empirical Mode Decomposition (EEMD), Multivariate Adaptive Regression Splines (MARS) and Support Vector Regression (SVR) model in order to forecast the monthly and daily Euro (EUR)/United States Dollar (USD), USD/Japanese Yen (JPY), Australian Dollar (AUD)/Norwegian Krone (NOK), New Zealand Dollar (NZD)/Brazilian Real (BRL) and South African Rand (ZAR)/Philippine Peso (PHP) exchange rates. After the decomposition with EEMD of the original exchange rate series into a smoothed and a fluctuation component, MARS selects the most informative input datasets from the plethora of variables included in our initial data set. The selected variables are fed into two distinctive SVR models for forecasting each component separately one period ahead for daily and monthly data. The summation of the two forecasted components provides exchange rate forecasts. The above implementation exhibits superior forecasting ability in exchange rate forecasting compared to various models. Overall the proposed model a) is a combination of empirically proven effective techniques in forecasting time series, b) is data driven, c) relies on minimum initial assumptions and d) provides a structural aspect of the forecasting problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信