社会网络中信息扩散的表征学习:一个嵌入式级联模型

Simon Bourigault, S. Lamprier, P. Gallinari
{"title":"社会网络中信息扩散的表征学习:一个嵌入式级联模型","authors":"Simon Bourigault, S. Lamprier, P. Gallinari","doi":"10.1145/2835776.2835817","DOIUrl":null,"url":null,"abstract":"In this paper, we focus on information diffusion through social networks. Based on the well-known Independent Cascade model, we embed users of the social network in a latent space to extract more robust diffusion probabilities than those defined by classical graphical learning approaches. Better generalization abilities provided by the use of such a projection space allows our approach to present good performances on various real-world datasets, for both diffusion prediction and influence relationships inference tasks. Additionally, the use of a projection space enables our model to deal with larger social networks.","PeriodicalId":20567,"journal":{"name":"Proceedings of the Ninth ACM International Conference on Web Search and Data Mining","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"131","resultStr":"{\"title\":\"Representation Learning for Information Diffusion through Social Networks: an Embedded Cascade Model\",\"authors\":\"Simon Bourigault, S. Lamprier, P. Gallinari\",\"doi\":\"10.1145/2835776.2835817\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we focus on information diffusion through social networks. Based on the well-known Independent Cascade model, we embed users of the social network in a latent space to extract more robust diffusion probabilities than those defined by classical graphical learning approaches. Better generalization abilities provided by the use of such a projection space allows our approach to present good performances on various real-world datasets, for both diffusion prediction and influence relationships inference tasks. Additionally, the use of a projection space enables our model to deal with larger social networks.\",\"PeriodicalId\":20567,\"journal\":{\"name\":\"Proceedings of the Ninth ACM International Conference on Web Search and Data Mining\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"131\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Ninth ACM International Conference on Web Search and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2835776.2835817\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Ninth ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2835776.2835817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 131

摘要

在本文中,我们关注的是社会网络中的信息扩散。基于著名的独立级联模型,我们将社交网络的用户嵌入到潜在空间中,以提取比经典图形学习方法定义的更鲁棒的扩散概率。使用这样的投影空间提供了更好的泛化能力,使得我们的方法在各种真实世界的数据集上表现出良好的性能,无论是扩散预测还是影响关系推理任务。此外,投影空间的使用使我们的模型能够处理更大的社会网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Representation Learning for Information Diffusion through Social Networks: an Embedded Cascade Model
In this paper, we focus on information diffusion through social networks. Based on the well-known Independent Cascade model, we embed users of the social network in a latent space to extract more robust diffusion probabilities than those defined by classical graphical learning approaches. Better generalization abilities provided by the use of such a projection space allows our approach to present good performances on various real-world datasets, for both diffusion prediction and influence relationships inference tasks. Additionally, the use of a projection space enables our model to deal with larger social networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信