文章级关联及其在文件级关联判断中的作用研究

Zhijing Wu, Jiaxin Mao, Yiqun Liu, Min Zhang, Shaoping Ma
{"title":"文章级关联及其在文件级关联判断中的作用研究","authors":"Zhijing Wu, Jiaxin Mao, Yiqun Liu, Min Zhang, Shaoping Ma","doi":"10.1145/3331184.3331233","DOIUrl":null,"url":null,"abstract":"The understanding of the process of relevance judgment helps to inspire the design of retrieval models. Traditional retrieval models usually estimate relevance based on document-level signals. Recent works consider a more fine-grain, passage-level relevance information, which can further enhance retrieval performance. However, it lacks a detailed analysis of how passage-level relevance signals determine or influence the relevance judgment of the whole document. To investigate the role of passage-level relevance in the document-level relevance judgment, we construct an ad-hoc retrieval dataset with both passage-level and document-level relevance labels. A thorough analysis reveals that: 1) there is a strong correlation between the document-level relevance and the fractions of irrelevant passages to highly relevant passages; 2) the position, length and query similarity of passages play different roles in the determination of document-level relevance; 3) The sequential passage-level relevance within a document is a potential indicator for the document-level relevance. Based on the relationship between passage-level and document-level relevance, we also show that utilizing passage-level relevance signals can improve existing document ranking models. This study helps us better understand how users perceive relevance for a document and inspire the designing of novel ranking models leveraging fine-grain, passage-level relevance signals.","PeriodicalId":20700,"journal":{"name":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Investigating Passage-level Relevance and Its Role in Document-level Relevance Judgment\",\"authors\":\"Zhijing Wu, Jiaxin Mao, Yiqun Liu, Min Zhang, Shaoping Ma\",\"doi\":\"10.1145/3331184.3331233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The understanding of the process of relevance judgment helps to inspire the design of retrieval models. Traditional retrieval models usually estimate relevance based on document-level signals. Recent works consider a more fine-grain, passage-level relevance information, which can further enhance retrieval performance. However, it lacks a detailed analysis of how passage-level relevance signals determine or influence the relevance judgment of the whole document. To investigate the role of passage-level relevance in the document-level relevance judgment, we construct an ad-hoc retrieval dataset with both passage-level and document-level relevance labels. A thorough analysis reveals that: 1) there is a strong correlation between the document-level relevance and the fractions of irrelevant passages to highly relevant passages; 2) the position, length and query similarity of passages play different roles in the determination of document-level relevance; 3) The sequential passage-level relevance within a document is a potential indicator for the document-level relevance. Based on the relationship between passage-level and document-level relevance, we also show that utilizing passage-level relevance signals can improve existing document ranking models. This study helps us better understand how users perceive relevance for a document and inspire the designing of novel ranking models leveraging fine-grain, passage-level relevance signals.\",\"PeriodicalId\":20700,\"journal\":{\"name\":\"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3331184.3331233\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3331184.3331233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

对关联判断过程的理解有助于启发检索模型的设计。传统的检索模型通常基于文档级信号来估计相关性。最近的研究考虑了更细粒度的、篇章级的相关信息,可以进一步提高检索性能。然而,缺乏对段落级关联信号如何决定或影响整篇文章相关性判断的详细分析。为了研究段落级相关性在文档级相关性判断中的作用,我们构建了一个包含段落级和文档级相关标签的特别检索数据集。深入分析表明:1)文档级相关性与不相关段落与高度相关段落的比例之间存在很强的相关性;2)段落的位置、长度和查询相似度在确定文档级相关性中起着不同的作用;3)文档中的顺序段落级相关性是文档级相关性的潜在指示器。基于段落级和文档级相关性之间的关系,我们还表明利用段落级相关性信号可以改进现有的文档排序模型。这项研究帮助我们更好地理解用户如何感知文档的相关性,并启发我们设计利用细粒度、通道级相关性信号的新型排名模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigating Passage-level Relevance and Its Role in Document-level Relevance Judgment
The understanding of the process of relevance judgment helps to inspire the design of retrieval models. Traditional retrieval models usually estimate relevance based on document-level signals. Recent works consider a more fine-grain, passage-level relevance information, which can further enhance retrieval performance. However, it lacks a detailed analysis of how passage-level relevance signals determine or influence the relevance judgment of the whole document. To investigate the role of passage-level relevance in the document-level relevance judgment, we construct an ad-hoc retrieval dataset with both passage-level and document-level relevance labels. A thorough analysis reveals that: 1) there is a strong correlation between the document-level relevance and the fractions of irrelevant passages to highly relevant passages; 2) the position, length and query similarity of passages play different roles in the determination of document-level relevance; 3) The sequential passage-level relevance within a document is a potential indicator for the document-level relevance. Based on the relationship between passage-level and document-level relevance, we also show that utilizing passage-level relevance signals can improve existing document ranking models. This study helps us better understand how users perceive relevance for a document and inspire the designing of novel ranking models leveraging fine-grain, passage-level relevance signals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信