{"title":"供水管道自动布线","authors":"Francisco Jácome Sarmento","doi":"10.1590/2318-0331.272220220033","DOIUrl":null,"url":null,"abstract":"ABSTRACT This paper presents an algorithm capable of calculating the optimal route for pipelines that traverse terrain with or without additional displacement constraints to the difference in ground elevations and head losses to be overcome by pumping. The criterion used to determine the pipeline diameter and calculate feasible routes was minimizing the annual cost, which results from the sum of (i) annualized costs related to the acquisition of the pipeline and (ii) costs of payment for electric power to operate the system throughout its useful life. The geometry of the shortest routes in the multidimensional search space is calculated by the proposed algorithm, called BAGDA (Busca pelo Ajuste Geométrico da Despesa Anual, in Portuguese, or Search for the Annual Cost of Geometric Tuning, in English), thus obtaining the optimal combination of length and manometric head of the pipeline. The performed applications show the efficiency of the algorithm in providing subjectivity-free routes sensitive to the most important variables considered in the design of piping systems.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic routing of water supply pipelines\",\"authors\":\"Francisco Jácome Sarmento\",\"doi\":\"10.1590/2318-0331.272220220033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT This paper presents an algorithm capable of calculating the optimal route for pipelines that traverse terrain with or without additional displacement constraints to the difference in ground elevations and head losses to be overcome by pumping. The criterion used to determine the pipeline diameter and calculate feasible routes was minimizing the annual cost, which results from the sum of (i) annualized costs related to the acquisition of the pipeline and (ii) costs of payment for electric power to operate the system throughout its useful life. The geometry of the shortest routes in the multidimensional search space is calculated by the proposed algorithm, called BAGDA (Busca pelo Ajuste Geométrico da Despesa Anual, in Portuguese, or Search for the Annual Cost of Geometric Tuning, in English), thus obtaining the optimal combination of length and manometric head of the pipeline. The performed applications show the efficiency of the algorithm in providing subjectivity-free routes sensitive to the most important variables considered in the design of piping systems.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1590/2318-0331.272220220033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/2318-0331.272220220033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文提出了一种算法,能够计算管道的最佳路线,穿越地形有或没有额外的位移约束,以克服地面高程和水头损失的差异,通过泵送。用于确定管道直径和计算可行路线的标准是使年成本最小化,其结果是(i)与获取管道有关的年化成本和(ii)在整个使用寿命期间运行系统的电力支付成本的总和。利用所提出的BAGDA(葡萄牙语:Busca pelo Ajuste geomtrico da Despesa Annual,或英文:search for The Annual Cost of Geometric Tuning)算法计算多维搜索空间中最短路径的几何形状,从而获得管道长度和压力头的最佳组合。实际应用表明,该算法在提供对管道系统设计中考虑的最重要变量敏感的无主观性路线方面是有效的。
ABSTRACT This paper presents an algorithm capable of calculating the optimal route for pipelines that traverse terrain with or without additional displacement constraints to the difference in ground elevations and head losses to be overcome by pumping. The criterion used to determine the pipeline diameter and calculate feasible routes was minimizing the annual cost, which results from the sum of (i) annualized costs related to the acquisition of the pipeline and (ii) costs of payment for electric power to operate the system throughout its useful life. The geometry of the shortest routes in the multidimensional search space is calculated by the proposed algorithm, called BAGDA (Busca pelo Ajuste Geométrico da Despesa Anual, in Portuguese, or Search for the Annual Cost of Geometric Tuning, in English), thus obtaining the optimal combination of length and manometric head of the pipeline. The performed applications show the efficiency of the algorithm in providing subjectivity-free routes sensitive to the most important variables considered in the design of piping systems.