人工神经网络(ANN)用于室内空气颗粒物浓度预测

IF 1.1 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY
Athmane Gheziel, S. Hanini, Brahim Mohamedi
{"title":"人工神经网络(ANN)用于室内空气颗粒物浓度预测","authors":"Athmane Gheziel, S. Hanini, Brahim Mohamedi","doi":"10.1080/14733315.2021.1876408","DOIUrl":null,"url":null,"abstract":"Abstract Due to experimental data insufficiency for results validation realized by Computation Fluid Dynamics method (CFD), we are proposed new numerical simulations to determined concentration distribution of fine particles in indoor air for transient regime. The ANN model approach of multi-layer perceptron type with three layers is applied successfully. This model requires learning through a database which deduced from the bibliographic literature, composed by 2271 measurement points of which 80% assigned to ANN model training, 10% to test model and so the remaining (10%) assigned to validation part. The ANN model developed in this paper is beneficial and easy to predict fine particles distribution in air indoor when compared to the CFD method. The results average error found by this model does not reach 5%, when compared to the CFD method with an error of 16%. This model is used to treat the effect of the velocity and air exhaust section positions on the stability and flow regime establishment time.","PeriodicalId":55613,"journal":{"name":"International Journal of Ventilation","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Artificial neural network (ANN) for prediction indoor airborne particle concentration\",\"authors\":\"Athmane Gheziel, S. Hanini, Brahim Mohamedi\",\"doi\":\"10.1080/14733315.2021.1876408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Due to experimental data insufficiency for results validation realized by Computation Fluid Dynamics method (CFD), we are proposed new numerical simulations to determined concentration distribution of fine particles in indoor air for transient regime. The ANN model approach of multi-layer perceptron type with three layers is applied successfully. This model requires learning through a database which deduced from the bibliographic literature, composed by 2271 measurement points of which 80% assigned to ANN model training, 10% to test model and so the remaining (10%) assigned to validation part. The ANN model developed in this paper is beneficial and easy to predict fine particles distribution in air indoor when compared to the CFD method. The results average error found by this model does not reach 5%, when compared to the CFD method with an error of 16%. This model is used to treat the effect of the velocity and air exhaust section positions on the stability and flow regime establishment time.\",\"PeriodicalId\":55613,\"journal\":{\"name\":\"International Journal of Ventilation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Ventilation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/14733315.2021.1876408\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Ventilation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14733315.2021.1876408","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

摘要针对计算流体力学(CFD)方法验证结果实验数据不足的问题,提出了一种新的数值模拟方法来确定室内空气中细颗粒物的瞬态浓度分布。成功地应用了三层感知器型的多层神经网络模型方法。该模型需要通过参考文献推导的数据库进行学习,该数据库由2271个测量点组成,其中80%分配给ANN模型训练,10%分配给测试模型,其余(10%)分配给验证部分。与CFD方法相比,本文建立的人工神经网络模型更易于预测室内空气中细颗粒物的分布。该模型计算结果的平均误差不超过5%,而CFD计算结果的平均误差为16%。利用该模型分析了风速和排风段位置对稳定性和流型建立时间的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial neural network (ANN) for prediction indoor airborne particle concentration
Abstract Due to experimental data insufficiency for results validation realized by Computation Fluid Dynamics method (CFD), we are proposed new numerical simulations to determined concentration distribution of fine particles in indoor air for transient regime. The ANN model approach of multi-layer perceptron type with three layers is applied successfully. This model requires learning through a database which deduced from the bibliographic literature, composed by 2271 measurement points of which 80% assigned to ANN model training, 10% to test model and so the remaining (10%) assigned to validation part. The ANN model developed in this paper is beneficial and easy to predict fine particles distribution in air indoor when compared to the CFD method. The results average error found by this model does not reach 5%, when compared to the CFD method with an error of 16%. This model is used to treat the effect of the velocity and air exhaust section positions on the stability and flow regime establishment time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Ventilation
International Journal of Ventilation CONSTRUCTION & BUILDING TECHNOLOGY-ENERGY & FUELS
CiteScore
3.50
自引率
6.70%
发文量
7
审稿时长
>12 weeks
期刊介绍: This is a peer reviewed journal aimed at providing the latest information on research and application. Topics include: • New ideas concerned with the development or application of ventilation; • Validated case studies demonstrating the performance of ventilation strategies; • Information on needs and solutions for specific building types including: offices, dwellings, schools, hospitals, parking garages, urban buildings and recreational buildings etc; • Developments in numerical methods; • Measurement techniques; • Related issues in which the impact of ventilation plays an important role (e.g. the interaction of ventilation with air quality, health and comfort); • Energy issues related to ventilation (e.g. low energy systems, ventilation heating and cooling loss); • Driving forces (weather data, fan performance etc).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信