统一广义阿普斯托型多项式的生成函数所产生的函数族的实不动点和奇异值

Mohammad Sajid
{"title":"统一广义阿普斯托型多项式的生成函数所产生的函数族的实不动点和奇异值","authors":"Mohammad Sajid","doi":"10.22436/JNSA.012.09.05","DOIUrl":null,"url":null,"abstract":"Our main objective is to study the real fixed points and singular values of a two-parameter family of transcendental meromorphic functions gλ,n(z) = λ z (bz−1)n , λ ∈ R\\{0}, z ∈ C\\{0}, n ∈ N\\{1}, b > 0, b 6= 1 in the present paper which obtains from generating function of the unified generalized Apostol-type polynomials. The real fixed points of gλ,n(x), x ∈ R \\ {0} with their stability are found for n odd and n even. It is shown that gλ,n(z) has infinite number of singular values. Further, it is seen that some critical values of gλ,n(z) lie in the closure of the disk and other lie in the exterior of the disk with center at the origin.","PeriodicalId":48799,"journal":{"name":"Journal of Nonlinear Sciences and Applications","volume":"108 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real fixed points and singular values of family of functions arising from generating function of unified generalized Apostol-type polynomials\",\"authors\":\"Mohammad Sajid\",\"doi\":\"10.22436/JNSA.012.09.05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Our main objective is to study the real fixed points and singular values of a two-parameter family of transcendental meromorphic functions gλ,n(z) = λ z (bz−1)n , λ ∈ R\\\\{0}, z ∈ C\\\\{0}, n ∈ N\\\\{1}, b > 0, b 6= 1 in the present paper which obtains from generating function of the unified generalized Apostol-type polynomials. The real fixed points of gλ,n(x), x ∈ R \\\\ {0} with their stability are found for n odd and n even. It is shown that gλ,n(z) has infinite number of singular values. Further, it is seen that some critical values of gλ,n(z) lie in the closure of the disk and other lie in the exterior of the disk with center at the origin.\",\"PeriodicalId\":48799,\"journal\":{\"name\":\"Journal of Nonlinear Sciences and Applications\",\"volume\":\"108 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nonlinear Sciences and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22436/JNSA.012.09.05\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Sciences and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22436/JNSA.012.09.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的主要目的是研究由统一广义阿普stoll型多项式的生成函数得到的双参数超越亚纯函数族gλ,n(z) = λ z (bz - 1)n, λ∈R\{0}, z∈C\{0}, n∈n \{1}, b > 0, b 6= 1的实不动点和奇异值。对于n个奇数和n个偶数,求出了λ,n(x), x∈R \{0}的实不动点及其稳定性。证明了gλ,n(z)有无限个奇异值。进一步可以看出,一些临界值(λ,n(z))位于圆盘的闭合处,另一些临界值位于以原点为中心的圆盘的外部。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real fixed points and singular values of family of functions arising from generating function of unified generalized Apostol-type polynomials
Our main objective is to study the real fixed points and singular values of a two-parameter family of transcendental meromorphic functions gλ,n(z) = λ z (bz−1)n , λ ∈ R\{0}, z ∈ C\{0}, n ∈ N\{1}, b > 0, b 6= 1 in the present paper which obtains from generating function of the unified generalized Apostol-type polynomials. The real fixed points of gλ,n(x), x ∈ R \ {0} with their stability are found for n odd and n even. It is shown that gλ,n(z) has infinite number of singular values. Further, it is seen that some critical values of gλ,n(z) lie in the closure of the disk and other lie in the exterior of the disk with center at the origin.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nonlinear Sciences and Applications
Journal of Nonlinear Sciences and Applications MATHEMATICS, APPLIED-MATHEMATICS
自引率
0.00%
发文量
11
期刊介绍: The Journal of Nonlinear Science and Applications (JNSA) (print: ISSN 2008-1898 online: ISSN 2008-1901) is an international journal which provides very fast publication of original research papers in the fields of nonlinear analysis. Journal of Nonlinear Science and Applications is a journal that aims to unite and stimulate mathematical research community. It publishes original research papers and survey articles on all areas of nonlinear analysis and theoretical applied nonlinear analysis. All articles are fully refereed and are judged by their contribution to advancing the state of the science of mathematics. Manuscripts are invited from academicians, research students, and scientists for publication consideration. Papers are accepted for editorial consideration through online submission with the understanding that they have not been published, submitted or accepted for publication elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信