天然气生物蛋白发酵装置的技术与实施

Vladimir M. Kochetkov, I. Gaganov, V. Kochetkov, Pavel A. Nyunkov
{"title":"天然气生物蛋白发酵装置的技术与实施","authors":"Vladimir M. Kochetkov, I. Gaganov, V. Kochetkov, Pavel A. Nyunkov","doi":"10.32362/2410-6593-2023-18-3-230-242","DOIUrl":null,"url":null,"abstract":"Objectives. To conduct a comparative analysis of the features of a fermentation unit design for obtaining bioprotein from natural gas and determine the main technical and structural solutions used in the development of fermentation apparatus, which vary according to the method of organizing hydraulic and mass transfer processes.Results. An analysis of publications devoted to the problem of developing technological equipment for conducting the process of obtaining a bioprotein from natural gas is presented. Using the comparative analysis, the key features of bioreactors and their internal elements are indicated according to the method of organizing the hydrodynamic regime. The main approaches to the technological development of fermentation units for obtaining bioprotein from natural gas are described and technical solutions used in the implementation of these structures are identified.Conclusions. Fermenter designs for the cultivation of methane-oxidizing microorganisms vary according to the main approaches for implementing the hydraulic regime inside the apparatus. While one class of fermentation systems is based on the principle of volumetric mixing in the working space of the apparatus, with the possibility of including external circulation circuits, additional tanks, and auxiliary bioreactors in the system, the other main class relies on the principle of flow (displacement) in the tube space with subsequent release of the gas phase from the circulating culture liquid.","PeriodicalId":12215,"journal":{"name":"Fine Chemical Technologies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Technology and implementation of fermentative units for bioprotein production from natural gas\",\"authors\":\"Vladimir M. Kochetkov, I. Gaganov, V. Kochetkov, Pavel A. Nyunkov\",\"doi\":\"10.32362/2410-6593-2023-18-3-230-242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objectives. To conduct a comparative analysis of the features of a fermentation unit design for obtaining bioprotein from natural gas and determine the main technical and structural solutions used in the development of fermentation apparatus, which vary according to the method of organizing hydraulic and mass transfer processes.Results. An analysis of publications devoted to the problem of developing technological equipment for conducting the process of obtaining a bioprotein from natural gas is presented. Using the comparative analysis, the key features of bioreactors and their internal elements are indicated according to the method of organizing the hydrodynamic regime. The main approaches to the technological development of fermentation units for obtaining bioprotein from natural gas are described and technical solutions used in the implementation of these structures are identified.Conclusions. Fermenter designs for the cultivation of methane-oxidizing microorganisms vary according to the main approaches for implementing the hydraulic regime inside the apparatus. While one class of fermentation systems is based on the principle of volumetric mixing in the working space of the apparatus, with the possibility of including external circulation circuits, additional tanks, and auxiliary bioreactors in the system, the other main class relies on the principle of flow (displacement) in the tube space with subsequent release of the gas phase from the circulating culture liquid.\",\"PeriodicalId\":12215,\"journal\":{\"name\":\"Fine Chemical Technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fine Chemical Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32362/2410-6593-2023-18-3-230-242\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fine Chemical Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32362/2410-6593-2023-18-3-230-242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目标。对从天然气中提取生物蛋白的发酵装置设计的特点进行比较分析,并确定发酵装置开发中使用的主要技术和结构解决方案,这些解决方案根据组织水力和传质过程的方法而变化。对专门研究开发用于从天然气中获得生物蛋白的工艺设备问题的出版物进行了分析。通过对比分析,根据水动力状态的组织方法,指出了生物反应器及其内部要素的关键特征。介绍了从天然气中提取生物蛋白的发酵装置技术发展的主要途径,并确定了实现这些结构所采用的技术方案。用于培养甲烷氧化微生物的发酵罐设计根据在装置内实现水力机制的主要方法而有所不同。一类发酵系统基于装置工作空间中的体积混合原理,并可能在系统中包括外部循环回路、附加罐和辅助生物反应器,而另一类主要依赖于管空间中的流动(位移)原理,随后从循环培养液中释放气相。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Technology and implementation of fermentative units for bioprotein production from natural gas
Objectives. To conduct a comparative analysis of the features of a fermentation unit design for obtaining bioprotein from natural gas and determine the main technical and structural solutions used in the development of fermentation apparatus, which vary according to the method of organizing hydraulic and mass transfer processes.Results. An analysis of publications devoted to the problem of developing technological equipment for conducting the process of obtaining a bioprotein from natural gas is presented. Using the comparative analysis, the key features of bioreactors and their internal elements are indicated according to the method of organizing the hydrodynamic regime. The main approaches to the technological development of fermentation units for obtaining bioprotein from natural gas are described and technical solutions used in the implementation of these structures are identified.Conclusions. Fermenter designs for the cultivation of methane-oxidizing microorganisms vary according to the main approaches for implementing the hydraulic regime inside the apparatus. While one class of fermentation systems is based on the principle of volumetric mixing in the working space of the apparatus, with the possibility of including external circulation circuits, additional tanks, and auxiliary bioreactors in the system, the other main class relies on the principle of flow (displacement) in the tube space with subsequent release of the gas phase from the circulating culture liquid.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信