近红外漫反射光谱法无损检测核桃仁水分含量

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Dan Peng, Yali Liu, Jiasheng Yang, Yanlan Bi, Jingnan Chen
{"title":"近红外漫反射光谱法无损检测核桃仁水分含量","authors":"Dan Peng, Yali Liu, Jiasheng Yang, Yanlan Bi, Jingnan Chen","doi":"10.1155/2021/9986940","DOIUrl":null,"url":null,"abstract":"The rapid and accurate detection of the moisture content is of great significance to the quality evaluation and oil extraction process of walnut kernel. Near-infrared (NIR) spectroscopy is an ideal method for measuring the moisture content in walnut kernel. In this study, a regression model for moisture content in walnut kernel was developed based on NIR diffuse reflectance spectroscopy using chemometric methods. The different spectral pretreatment methods were adopted to preprocess the original spectral data. The whole spectra band was divided into 5 subbands, 10 subbands, 15 subbands, and 20 subbands to screen specific wavelengths relevant to the walnut kernel moisture content. PLS (partial least square regression), MLR (multivariate linear regression), PCR (principle component regression), and SVR (support vector regression) were used to establish the relationship model between the spectral data and measurement values of the moisture content. In comparison, the optimized modeling conditions were determined as follows: detection wavelength 1349–1490 nm, SNV-FD (standard normal variate transformation and first derivative) preprocessing method, and PLS algorithm. Under these conditions, the square correlation coefficient (R2) and root mean square error of prediction (RMSEP) of the prediction model were 0.9865 and 0.0017, respectively. The results of this study provided a feasible method for the rapid detection of moisture content in walnut kernel. To improve the performance and applicability of the model, it is necessary to continuously expand the size of the sample set.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Nondestructive Detection of Moisture Content in Walnut Kernel by Near-Infrared Diffuse Reflectance Spectroscopy\",\"authors\":\"Dan Peng, Yali Liu, Jiasheng Yang, Yanlan Bi, Jingnan Chen\",\"doi\":\"10.1155/2021/9986940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid and accurate detection of the moisture content is of great significance to the quality evaluation and oil extraction process of walnut kernel. Near-infrared (NIR) spectroscopy is an ideal method for measuring the moisture content in walnut kernel. In this study, a regression model for moisture content in walnut kernel was developed based on NIR diffuse reflectance spectroscopy using chemometric methods. The different spectral pretreatment methods were adopted to preprocess the original spectral data. The whole spectra band was divided into 5 subbands, 10 subbands, 15 subbands, and 20 subbands to screen specific wavelengths relevant to the walnut kernel moisture content. PLS (partial least square regression), MLR (multivariate linear regression), PCR (principle component regression), and SVR (support vector regression) were used to establish the relationship model between the spectral data and measurement values of the moisture content. In comparison, the optimized modeling conditions were determined as follows: detection wavelength 1349–1490 nm, SNV-FD (standard normal variate transformation and first derivative) preprocessing method, and PLS algorithm. Under these conditions, the square correlation coefficient (R2) and root mean square error of prediction (RMSEP) of the prediction model were 0.9865 and 0.0017, respectively. The results of this study provided a feasible method for the rapid detection of moisture content in walnut kernel. To improve the performance and applicability of the model, it is necessary to continuously expand the size of the sample set.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1155/2021/9986940\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1155/2021/9986940","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 8

摘要

快速、准确地检测核桃仁的水分含量,对核桃仁的质量评价和油脂提取工艺具有重要意义。近红外光谱法是测量核桃仁水分含量的理想方法。本文采用化学计量学方法,建立了基于近红外漫反射光谱的核桃仁水分含量回归模型。采用不同的光谱预处理方法对原始光谱数据进行预处理。将整个光谱带划分为5个子带、10个子带、15个子带和20个子带,筛选与核桃仁含水量相关的特定波长。采用偏最小二乘回归(PLS)、多元线性回归(MLR)、主成分回归(PCR)、支持向量回归(SVR)等方法建立光谱数据与水分测量值之间的关系模型。通过比较,确定了优化的建模条件为:检测波长1349 ~ 1490 nm,采用标准正态变量变换和一阶导数(SNV-FD)预处理方法,采用PLS算法。在此条件下,预测模型的平方相关系数(R2)为0.9865,预测均方根误差(RMSEP)为0.0017。本研究结果为快速测定核桃仁水分含量提供了一种可行的方法。为了提高模型的性能和适用性,需要不断扩大样本集的规模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nondestructive Detection of Moisture Content in Walnut Kernel by Near-Infrared Diffuse Reflectance Spectroscopy
The rapid and accurate detection of the moisture content is of great significance to the quality evaluation and oil extraction process of walnut kernel. Near-infrared (NIR) spectroscopy is an ideal method for measuring the moisture content in walnut kernel. In this study, a regression model for moisture content in walnut kernel was developed based on NIR diffuse reflectance spectroscopy using chemometric methods. The different spectral pretreatment methods were adopted to preprocess the original spectral data. The whole spectra band was divided into 5 subbands, 10 subbands, 15 subbands, and 20 subbands to screen specific wavelengths relevant to the walnut kernel moisture content. PLS (partial least square regression), MLR (multivariate linear regression), PCR (principle component regression), and SVR (support vector regression) were used to establish the relationship model between the spectral data and measurement values of the moisture content. In comparison, the optimized modeling conditions were determined as follows: detection wavelength 1349–1490 nm, SNV-FD (standard normal variate transformation and first derivative) preprocessing method, and PLS algorithm. Under these conditions, the square correlation coefficient (R2) and root mean square error of prediction (RMSEP) of the prediction model were 0.9865 and 0.0017, respectively. The results of this study provided a feasible method for the rapid detection of moisture content in walnut kernel. To improve the performance and applicability of the model, it is necessary to continuously expand the size of the sample set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信