A. Mahimkar, A. Sivakumar, Zihui Ge, Shomik Pathak, Karunasish Biswas
{"title":"金","authors":"A. Mahimkar, A. Sivakumar, Zihui Ge, Shomik Pathak, Karunasish Biswas","doi":"10.1145/3452296.3472906","DOIUrl":null,"url":null,"abstract":"Cellular service providers add carriers in the network in order to support the increasing demand in voice and data traffic and provide good quality of service to the users. Addition of new carriers requires the network operators to accurately configure their parameters for the desired behaviors. This is a challenging problem because of the large number of parameters related to various functions like user mobility, interference management and load balancing. Furthermore, the same parameters can have varying values across different locations to manage user and traffic behaviors as planned and respond appropriately to different signal propagation patterns and interference. Manual configuration is time-consuming, tedious and error-prone, which could result in poor quality of service. In this paper, we propose a new data-driven recommendation approach Auric to automatically and accurately generate configuration parameters for new carriers added in cellular networks. Our approach incorporates new algorithms based on collaborative filtering and geographical proximity to automatically determine similarity across existing carriers. We conduct a thorough evaluation using real-world LTE network data and observe a high accuracy (96%) across a large number of carriers and configuration parameters. We also share experiences from our deployment and use of Auric in production environments.","PeriodicalId":20487,"journal":{"name":"Proceedings of the 2021 ACM SIGCOMM 2021 Conference","volume":"2014 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Auric\",\"authors\":\"A. Mahimkar, A. Sivakumar, Zihui Ge, Shomik Pathak, Karunasish Biswas\",\"doi\":\"10.1145/3452296.3472906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cellular service providers add carriers in the network in order to support the increasing demand in voice and data traffic and provide good quality of service to the users. Addition of new carriers requires the network operators to accurately configure their parameters for the desired behaviors. This is a challenging problem because of the large number of parameters related to various functions like user mobility, interference management and load balancing. Furthermore, the same parameters can have varying values across different locations to manage user and traffic behaviors as planned and respond appropriately to different signal propagation patterns and interference. Manual configuration is time-consuming, tedious and error-prone, which could result in poor quality of service. In this paper, we propose a new data-driven recommendation approach Auric to automatically and accurately generate configuration parameters for new carriers added in cellular networks. Our approach incorporates new algorithms based on collaborative filtering and geographical proximity to automatically determine similarity across existing carriers. We conduct a thorough evaluation using real-world LTE network data and observe a high accuracy (96%) across a large number of carriers and configuration parameters. We also share experiences from our deployment and use of Auric in production environments.\",\"PeriodicalId\":20487,\"journal\":{\"name\":\"Proceedings of the 2021 ACM SIGCOMM 2021 Conference\",\"volume\":\"2014 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 ACM SIGCOMM 2021 Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3452296.3472906\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 ACM SIGCOMM 2021 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3452296.3472906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Auric
Cellular service providers add carriers in the network in order to support the increasing demand in voice and data traffic and provide good quality of service to the users. Addition of new carriers requires the network operators to accurately configure their parameters for the desired behaviors. This is a challenging problem because of the large number of parameters related to various functions like user mobility, interference management and load balancing. Furthermore, the same parameters can have varying values across different locations to manage user and traffic behaviors as planned and respond appropriately to different signal propagation patterns and interference. Manual configuration is time-consuming, tedious and error-prone, which could result in poor quality of service. In this paper, we propose a new data-driven recommendation approach Auric to automatically and accurately generate configuration parameters for new carriers added in cellular networks. Our approach incorporates new algorithms based on collaborative filtering and geographical proximity to automatically determine similarity across existing carriers. We conduct a thorough evaluation using real-world LTE network data and observe a high accuracy (96%) across a large number of carriers and configuration parameters. We also share experiences from our deployment and use of Auric in production environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信