拓扑空间上由连续函数组成的泛函空间

IF 1 Q1 MATHEMATICS
Hiroshi Yamazaki, K. Miyajima, Y. Shidama
{"title":"拓扑空间上由连续函数组成的泛函空间","authors":"Hiroshi Yamazaki, K. Miyajima, Y. Shidama","doi":"10.2478/forma-2021-0005","DOIUrl":null,"url":null,"abstract":"Summary In this article, using the Mizar system [1], [2], first we give a definition of a functional space which is constructed from all continuous functions defined on a compact topological space [5]. We prove that this functional space is a Banach space [3]. Next, we give a definition of a function space which is constructed from all continuous functions with bounded support. We also prove that this function space is a normed space.","PeriodicalId":42667,"journal":{"name":"Formalized Mathematics","volume":"5 1","pages":"49 - 62"},"PeriodicalIF":1.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Functional Space Consisted by Continuous Functions on Topological Space\",\"authors\":\"Hiroshi Yamazaki, K. Miyajima, Y. Shidama\",\"doi\":\"10.2478/forma-2021-0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary In this article, using the Mizar system [1], [2], first we give a definition of a functional space which is constructed from all continuous functions defined on a compact topological space [5]. We prove that this functional space is a Banach space [3]. Next, we give a definition of a function space which is constructed from all continuous functions with bounded support. We also prove that this function space is a normed space.\",\"PeriodicalId\":42667,\"journal\":{\"name\":\"Formalized Mathematics\",\"volume\":\"5 1\",\"pages\":\"49 - 62\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Formalized Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/forma-2021-0005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Formalized Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/forma-2021-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

本文利用Mizar系统[1],[2],首先给出了由紧拓扑空间上定义的所有连续函数构成的泛函空间的定义[5]。我们证明了这个泛函空间是一个Banach空间[3]。其次,给出了由所有具有有界支持的连续函数构成的函数空间的定义。我们也证明了这个函数空间是赋范空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Functional Space Consisted by Continuous Functions on Topological Space
Summary In this article, using the Mizar system [1], [2], first we give a definition of a functional space which is constructed from all continuous functions defined on a compact topological space [5]. We prove that this functional space is a Banach space [3]. Next, we give a definition of a function space which is constructed from all continuous functions with bounded support. We also prove that this function space is a normed space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Formalized Mathematics
Formalized Mathematics MATHEMATICS-
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊介绍: Formalized Mathematics is to be issued quarterly and publishes papers which are abstracts of Mizar articles contributed to the Mizar Mathematical Library (MML) - the basis of a knowledge management system for mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信