用Arduino Due微控制器改造1960年代180mw混流式水轮机调速器电子模拟装置

IF 1 Q4 AUTOMATION & CONTROL SYSTEMS
Jose Luiz Guarino, Jose Flavio Silveira Feiteira
{"title":"用Arduino Due微控制器改造1960年代180mw混流式水轮机调速器电子模拟装置","authors":"Jose Luiz Guarino, Jose Flavio Silveira Feiteira","doi":"10.11648/j.cse.20230701.11","DOIUrl":null,"url":null,"abstract":": This paper describes the retrofit of a governor electronic-analogical of a Francis turbine of a synchronous generator of the decade of 1960. The author has many years of experience in maintenance in governors of hydroelectric power plants including excitation systems. Governors are responsible to maintain constant the frequency of a power electric net. The original model of the governor in question was obtained in local field tests, not related in this paper. In this retrofit, time constants were maintained to respect the original project and avoid hydraulic harmful and dangerous transitory problems. The original continuous model of the governor was simplified toa a second order model. The second order continuous model was emulated to a discrete system. The difference equation was created and microcontroller Arduino Due was programming. The digital controller produced, was syntonized to cancel the mathematical function of the servomotor, to reduce the grade of the resulted system obtaining a second order system. The hydraulic part of the governor was simulated using 741 operational amplifiers. During the tests in the workbench the author burned two Arduino’s electronic cards so it was necessary to create the electronic interface between Arduino and the 741 amp op including over and under voltage protection. The complete set was successfully tested in workbench. The mathematical models were priory simulated with Matlab-Simulink and there were the corresponding electronic simulations in workbench that confirmed the results. This retrofit solution, using Arduino Due, is of low cost compared to traditional manufacturers.","PeriodicalId":46052,"journal":{"name":"Journal of Control Science and Engineering","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Retrofit of a Governor Electronic-Analogic of a Francis Turbine of 180 MW of Decade of 1960 Using Microcontroller Arduino Due\",\"authors\":\"Jose Luiz Guarino, Jose Flavio Silveira Feiteira\",\"doi\":\"10.11648/j.cse.20230701.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": This paper describes the retrofit of a governor electronic-analogical of a Francis turbine of a synchronous generator of the decade of 1960. The author has many years of experience in maintenance in governors of hydroelectric power plants including excitation systems. Governors are responsible to maintain constant the frequency of a power electric net. The original model of the governor in question was obtained in local field tests, not related in this paper. In this retrofit, time constants were maintained to respect the original project and avoid hydraulic harmful and dangerous transitory problems. The original continuous model of the governor was simplified toa a second order model. The second order continuous model was emulated to a discrete system. The difference equation was created and microcontroller Arduino Due was programming. The digital controller produced, was syntonized to cancel the mathematical function of the servomotor, to reduce the grade of the resulted system obtaining a second order system. The hydraulic part of the governor was simulated using 741 operational amplifiers. During the tests in the workbench the author burned two Arduino’s electronic cards so it was necessary to create the electronic interface between Arduino and the 741 amp op including over and under voltage protection. The complete set was successfully tested in workbench. The mathematical models were priory simulated with Matlab-Simulink and there were the corresponding electronic simulations in workbench that confirmed the results. This retrofit solution, using Arduino Due, is of low cost compared to traditional manufacturers.\",\"PeriodicalId\":46052,\"journal\":{\"name\":\"Journal of Control Science and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Control Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/j.cse.20230701.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Control Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/j.cse.20230701.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了1960年代某同步发电机混流式水轮机调速器电子模拟装置的改造。作者有多年的水电站调速器(包括励磁系统)维修经验。管理者负责保持电网的频率恒定。该调速器的原始模型是在局部现场试验中得到的,本文不作介绍。在这次改造中,保持了时间常数,以尊重原始项目,避免水力有害和危险的暂时问题。将原调速器的连续模型简化为二阶模型。将二阶连续模型仿真为一个离散系统。建立差分方程,并用Arduino Due单片机进行编程。所产生的数字控制器,对伺服电机的数学函数进行了同步化,降低了系统的等级,得到了二阶系统。采用741运算放大器对调速器液压部分进行了仿真。在工作台上的测试中,作者烧坏了两张Arduino的电子卡,因此有必要在Arduino和741放大器之间创建包括过压和欠压保护的电子接口。整套系统在工作台上测试成功。利用Matlab-Simulink对数学模型进行了初步仿真,并在工作台上进行了相应的电子仿真验证。与传统制造商相比,这种使用Arduino Due的改造方案成本较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Retrofit of a Governor Electronic-Analogic of a Francis Turbine of 180 MW of Decade of 1960 Using Microcontroller Arduino Due
: This paper describes the retrofit of a governor electronic-analogical of a Francis turbine of a synchronous generator of the decade of 1960. The author has many years of experience in maintenance in governors of hydroelectric power plants including excitation systems. Governors are responsible to maintain constant the frequency of a power electric net. The original model of the governor in question was obtained in local field tests, not related in this paper. In this retrofit, time constants were maintained to respect the original project and avoid hydraulic harmful and dangerous transitory problems. The original continuous model of the governor was simplified toa a second order model. The second order continuous model was emulated to a discrete system. The difference equation was created and microcontroller Arduino Due was programming. The digital controller produced, was syntonized to cancel the mathematical function of the servomotor, to reduce the grade of the resulted system obtaining a second order system. The hydraulic part of the governor was simulated using 741 operational amplifiers. During the tests in the workbench the author burned two Arduino’s electronic cards so it was necessary to create the electronic interface between Arduino and the 741 amp op including over and under voltage protection. The complete set was successfully tested in workbench. The mathematical models were priory simulated with Matlab-Simulink and there were the corresponding electronic simulations in workbench that confirmed the results. This retrofit solution, using Arduino Due, is of low cost compared to traditional manufacturers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Control Science and Engineering
Journal of Control Science and Engineering AUTOMATION & CONTROL SYSTEMS-
CiteScore
4.70
自引率
0.00%
发文量
54
审稿时长
19 weeks
期刊介绍: Journal of Control Science and Engineering is a peer-reviewed, open access journal that publishes original research articles as well as review articles in all areas of control science and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信