{"title":"高对比微CT和FIB-SEM在致密岩石渗透率预测中的应用","authors":"A. Avdonin, M. Ebadi, V. Krutko","doi":"10.2118/206588-ms","DOIUrl":null,"url":null,"abstract":"\n Digital rock analysis has proven to be useful for the prediction of petrophysical properties of conventional reservoirs, where the pore space is captured well by a modern µCT scanner with a resolution of 1-5 µm. Nevertheless, this resolution is not enough to accurately capture the pore space of tight (low-permeable) rock samples. As a result, derived digital rock models do not reflect the real rock topology, and permeability predictions yield unreliable results. Our approach deploys high-contrast µCT scanning technique and Focused Ion Beam milling combined with Scanning Electron Microscopy to improve the quality of digital rock models and, hence, the permeability prediction. This workflow is successfully applied to a low-permeable rock sample of Achimov deposits. The computed permeability compares well to the experimental value.","PeriodicalId":11052,"journal":{"name":"Day 3 Thu, October 14, 2021","volume":"53 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Application of High-Contrast µCT and FIB-SEM for the Improvement in the Permeability Prediction of Tight Rock Samples\",\"authors\":\"A. Avdonin, M. Ebadi, V. Krutko\",\"doi\":\"10.2118/206588-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Digital rock analysis has proven to be useful for the prediction of petrophysical properties of conventional reservoirs, where the pore space is captured well by a modern µCT scanner with a resolution of 1-5 µm. Nevertheless, this resolution is not enough to accurately capture the pore space of tight (low-permeable) rock samples. As a result, derived digital rock models do not reflect the real rock topology, and permeability predictions yield unreliable results. Our approach deploys high-contrast µCT scanning technique and Focused Ion Beam milling combined with Scanning Electron Microscopy to improve the quality of digital rock models and, hence, the permeability prediction. This workflow is successfully applied to a low-permeable rock sample of Achimov deposits. The computed permeability compares well to the experimental value.\",\"PeriodicalId\":11052,\"journal\":{\"name\":\"Day 3 Thu, October 14, 2021\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 3 Thu, October 14, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/206588-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Thu, October 14, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/206588-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Application of High-Contrast µCT and FIB-SEM for the Improvement in the Permeability Prediction of Tight Rock Samples
Digital rock analysis has proven to be useful for the prediction of petrophysical properties of conventional reservoirs, where the pore space is captured well by a modern µCT scanner with a resolution of 1-5 µm. Nevertheless, this resolution is not enough to accurately capture the pore space of tight (low-permeable) rock samples. As a result, derived digital rock models do not reflect the real rock topology, and permeability predictions yield unreliable results. Our approach deploys high-contrast µCT scanning technique and Focused Ion Beam milling combined with Scanning Electron Microscopy to improve the quality of digital rock models and, hence, the permeability prediction. This workflow is successfully applied to a low-permeable rock sample of Achimov deposits. The computed permeability compares well to the experimental value.