在移动平台上实时鲁棒识别说话人的情绪和特征

F. Eyben, Bernd Huber, E. Marchi, Dagmar M. Schuller, Björn Schuller
{"title":"在移动平台上实时鲁棒识别说话人的情绪和特征","authors":"F. Eyben, Bernd Huber, E. Marchi, Dagmar M. Schuller, Björn Schuller","doi":"10.1109/ACII.2015.7344658","DOIUrl":null,"url":null,"abstract":"We demonstrate audEERING's sensAI technology running natively on low-resource mobile devices applied to emotion analytics and speaker characterisation tasks. A showcase application for the Android platform is provided, where au-dEERING's highly noise robust voice activity detection based on Long Short-Term Memory Recurrent Neural Networks (LSTM-RNN) is combined with our core emotion recognition and speaker characterisation engine natively on the mobile device. This eliminates the need for network connectivity and allows to perform robust speaker state and trait recognition efficiently in real-time without network transmission lags. Real-time factors are benchmarked for a popular mobile device to demonstrate the efficiency, and average response times are compared to a server based approach. The output of the emotion analysis is visualized graphically in the arousal and valence space alongside the emotion category and further speaker characteristics.","PeriodicalId":6863,"journal":{"name":"2015 International Conference on Affective Computing and Intelligent Interaction (ACII)","volume":"28 1","pages":"778-780"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Real-time robust recognition of speakers' emotions and characteristics on mobile platforms\",\"authors\":\"F. Eyben, Bernd Huber, E. Marchi, Dagmar M. Schuller, Björn Schuller\",\"doi\":\"10.1109/ACII.2015.7344658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We demonstrate audEERING's sensAI technology running natively on low-resource mobile devices applied to emotion analytics and speaker characterisation tasks. A showcase application for the Android platform is provided, where au-dEERING's highly noise robust voice activity detection based on Long Short-Term Memory Recurrent Neural Networks (LSTM-RNN) is combined with our core emotion recognition and speaker characterisation engine natively on the mobile device. This eliminates the need for network connectivity and allows to perform robust speaker state and trait recognition efficiently in real-time without network transmission lags. Real-time factors are benchmarked for a popular mobile device to demonstrate the efficiency, and average response times are compared to a server based approach. The output of the emotion analysis is visualized graphically in the arousal and valence space alongside the emotion category and further speaker characteristics.\",\"PeriodicalId\":6863,\"journal\":{\"name\":\"2015 International Conference on Affective Computing and Intelligent Interaction (ACII)\",\"volume\":\"28 1\",\"pages\":\"778-780\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Affective Computing and Intelligent Interaction (ACII)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACII.2015.7344658\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Affective Computing and Intelligent Interaction (ACII)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACII.2015.7344658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

我们展示了audEERING的sensAI技术在低资源移动设备上本机运行,应用于情绪分析和说话人特征任务。提供了一个Android平台的展示应用程序,其中audeering基于长短期记忆递归神经网络(LSTM-RNN)的高噪声鲁棒语音活动检测与我们的核心情感识别和说话人特征引擎相结合,原生在移动设备上。这消除了对网络连接的需要,并允许在没有网络传输滞后的情况下有效地实时执行鲁棒的说话人状态和特征识别。实时因素对流行的移动设备进行基准测试,以证明效率,并将平均响应时间与基于服务器的方法进行比较。情绪分析的输出在唤醒和价态空间以及情绪类别和进一步的说话人特征中以图形方式可视化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-time robust recognition of speakers' emotions and characteristics on mobile platforms
We demonstrate audEERING's sensAI technology running natively on low-resource mobile devices applied to emotion analytics and speaker characterisation tasks. A showcase application for the Android platform is provided, where au-dEERING's highly noise robust voice activity detection based on Long Short-Term Memory Recurrent Neural Networks (LSTM-RNN) is combined with our core emotion recognition and speaker characterisation engine natively on the mobile device. This eliminates the need for network connectivity and allows to perform robust speaker state and trait recognition efficiently in real-time without network transmission lags. Real-time factors are benchmarked for a popular mobile device to demonstrate the efficiency, and average response times are compared to a server based approach. The output of the emotion analysis is visualized graphically in the arousal and valence space alongside the emotion category and further speaker characteristics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信