{"title":"具有三角形模糊粗糙数系数的模糊粗糙线性规划问题的最佳和最差模糊折衷解的求解算法","authors":"Gizem Temelcan","doi":"10.1007/s41066-022-00341-2","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":29966,"journal":{"name":"Granular Computing","volume":"23 1","pages":"479-489"},"PeriodicalIF":5.5000,"publicationDate":"2022-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A solution algorithm for finding the best and the worst fuzzy compromise solutions of fuzzy rough linear programming problem with triangular fuzzy rough number coefficients\",\"authors\":\"Gizem Temelcan\",\"doi\":\"10.1007/s41066-022-00341-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":29966,\"journal\":{\"name\":\"Granular Computing\",\"volume\":\"23 1\",\"pages\":\"479-489\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2022-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Granular Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s41066-022-00341-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Granular Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41066-022-00341-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A solution algorithm for finding the best and the worst fuzzy compromise solutions of fuzzy rough linear programming problem with triangular fuzzy rough number coefficients
期刊介绍:
Granular Computing constitutes an extensive body of knowledge, which dwells upon individual formalisms of information granules (established within various settings including set theory, interval calculus, fuzzy sets, rough sets, shadowed sets, probabilistic granules) and unifies them to form a coherent methodological and developmental environment. Granular Computing is about formation, processing and communicating information granules.