电子商务系统中K-Means与层次聚类的比较研究

Chinnam Sasidhar Reddy, N. S. K. Deepak Rao, Atkuri Sisir, Vysyaraju Shanmukha Srinivasa Raju, S. S. Aravinth
{"title":"电子商务系统中K-Means与层次聚类的比较研究","authors":"Chinnam Sasidhar Reddy, N. S. K. Deepak Rao, Atkuri Sisir, Vysyaraju Shanmukha Srinivasa Raju, S. S. Aravinth","doi":"10.1109/IDCIoT56793.2023.10053472","DOIUrl":null,"url":null,"abstract":"E-commerce systems have grown in popularity and are now used in almost every business. A platform for online product marketing and customer promotion is an e-commerce system. Customer clustering is defined as the process of categorizing consumers into sections that share resembling characteristics. To maximize each customer's profit to the business, customer clustering’s goal is to help decide how to engage clients in each category. To facilitate customer needs by improvising products and optimizing services, businesses can identify their most profitable customers by segmenting their customer base. As a result, customer clustering assists E-commerce systems in promoting the appropriate product to the appropriate customer to increase profits. Customer clustering factors include geographic, psychological, behavioral, and demographic factors. The consumer’s behavioral factor has been highlighted in this research. As a result, to discover the consumption behavior of the E-shopping system, customers will be analyzed using several clustering algorithms. Clustering seeks to maximize experimental similarity within a cluster while minimizing dissimilarity between clusters. Customers’ age, gender, income, expenditure rate, etc. are correlated in this study. To assist vendors in identifying and concentrating on the most profitable segments of the market as opposed to the least profitable segments, this study compared several clustering techniques to find which technique is more accurate to cluster customer behavior. A significant role for this kind of analysis in business improvement to keep customers for a long time and boost business profits, businesses group their customers based on similar behavioral traits. It also enables the maximum disclosure of online offers to attract the attention of potential customers. A learning algorithm called K-Means and an unsupervised algorithm hierarchical clustering is applied to a customer dataset to compare which strategy gives most accurate clustering.","PeriodicalId":60583,"journal":{"name":"物联网技术","volume":"36 1","pages":"805-811"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comparative Survey on K-Means and Hierarchical Clustering in E-Commerce Systems\",\"authors\":\"Chinnam Sasidhar Reddy, N. S. K. Deepak Rao, Atkuri Sisir, Vysyaraju Shanmukha Srinivasa Raju, S. S. Aravinth\",\"doi\":\"10.1109/IDCIoT56793.2023.10053472\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"E-commerce systems have grown in popularity and are now used in almost every business. A platform for online product marketing and customer promotion is an e-commerce system. Customer clustering is defined as the process of categorizing consumers into sections that share resembling characteristics. To maximize each customer's profit to the business, customer clustering’s goal is to help decide how to engage clients in each category. To facilitate customer needs by improvising products and optimizing services, businesses can identify their most profitable customers by segmenting their customer base. As a result, customer clustering assists E-commerce systems in promoting the appropriate product to the appropriate customer to increase profits. Customer clustering factors include geographic, psychological, behavioral, and demographic factors. The consumer’s behavioral factor has been highlighted in this research. As a result, to discover the consumption behavior of the E-shopping system, customers will be analyzed using several clustering algorithms. Clustering seeks to maximize experimental similarity within a cluster while minimizing dissimilarity between clusters. Customers’ age, gender, income, expenditure rate, etc. are correlated in this study. To assist vendors in identifying and concentrating on the most profitable segments of the market as opposed to the least profitable segments, this study compared several clustering techniques to find which technique is more accurate to cluster customer behavior. A significant role for this kind of analysis in business improvement to keep customers for a long time and boost business profits, businesses group their customers based on similar behavioral traits. It also enables the maximum disclosure of online offers to attract the attention of potential customers. A learning algorithm called K-Means and an unsupervised algorithm hierarchical clustering is applied to a customer dataset to compare which strategy gives most accurate clustering.\",\"PeriodicalId\":60583,\"journal\":{\"name\":\"物联网技术\",\"volume\":\"36 1\",\"pages\":\"805-811\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"物联网技术\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1109/IDCIoT56793.2023.10053472\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"物联网技术","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/IDCIoT56793.2023.10053472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电子商务系统越来越受欢迎,现在几乎在每个企业中使用。在线产品营销和客户推广的平台是电子商务系统。客户聚类定义为将消费者分类为具有相似特征的部分的过程。为了使每个客户对企业的利润最大化,客户集群的目标是帮助决定如何吸引每个类别的客户。为了通过即兴创作产品和优化服务来满足客户需求,企业可以通过细分客户群来确定最有利可图的客户。因此,客户集群可以帮助电子商务系统将合适的产品推广给合适的客户,从而增加利润。顾客聚类因素包括地理因素、心理因素、行为因素和人口因素。消费者的行为因素在本研究中得到了强调。因此,为了发现电子购物系统的消费行为,将使用几种聚类算法对客户进行分析。聚类寻求最大限度地提高集群内的实验相似性,同时最小化集群之间的不相似性。在本研究中,顾客的年龄、性别、收入、消费率等是相关的。为了帮助供应商识别和专注于最有利可图的细分市场,而不是最不有利可图的细分市场,本研究比较了几种聚类技术,以找出哪种技术更准确地聚集客户行为。这种分析在业务改进中发挥着重要作用,为了长期保持客户并提高业务利润,企业根据相似的行为特征对客户进行分组。它还可以最大限度地披露在线报价,以吸引潜在客户的注意。将一种称为K-Means的学习算法和一种无监督算法分层聚类应用于客户数据集,以比较哪种策略提供最准确的聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Comparative Survey on K-Means and Hierarchical Clustering in E-Commerce Systems
E-commerce systems have grown in popularity and are now used in almost every business. A platform for online product marketing and customer promotion is an e-commerce system. Customer clustering is defined as the process of categorizing consumers into sections that share resembling characteristics. To maximize each customer's profit to the business, customer clustering’s goal is to help decide how to engage clients in each category. To facilitate customer needs by improvising products and optimizing services, businesses can identify their most profitable customers by segmenting their customer base. As a result, customer clustering assists E-commerce systems in promoting the appropriate product to the appropriate customer to increase profits. Customer clustering factors include geographic, psychological, behavioral, and demographic factors. The consumer’s behavioral factor has been highlighted in this research. As a result, to discover the consumption behavior of the E-shopping system, customers will be analyzed using several clustering algorithms. Clustering seeks to maximize experimental similarity within a cluster while minimizing dissimilarity between clusters. Customers’ age, gender, income, expenditure rate, etc. are correlated in this study. To assist vendors in identifying and concentrating on the most profitable segments of the market as opposed to the least profitable segments, this study compared several clustering techniques to find which technique is more accurate to cluster customer behavior. A significant role for this kind of analysis in business improvement to keep customers for a long time and boost business profits, businesses group their customers based on similar behavioral traits. It also enables the maximum disclosure of online offers to attract the attention of potential customers. A learning algorithm called K-Means and an unsupervised algorithm hierarchical clustering is applied to a customer dataset to compare which strategy gives most accurate clustering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
5689
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信