{"title":"水分对复合材料/木材粘结界面断裂韧性的影响","authors":"P. Qiao, J. Davalos, B. Trimble","doi":"10.1520/STP14819S","DOIUrl":null,"url":null,"abstract":"Current research on wood reinforcement has focused on the use of fiber-reinforced plastic (FRP) strips or fabrics bonded to wood members. Although significant increases in stiffness and strength have been achieved by thisreinforcing technique, there is a concern about the reliable performance of the wood-FRP interface bond, which can be susceptible to delamination. The objective of this study is to present a combined analytical/ experimental study to evaluate the effect of moisture on fracture toughness of composite/wood bonded interfaces under Mode I loading. A contoured double cantilever beam (CDCB) specimen is used to characterize the fracture toughness of both wood-wood and wood-FRP samples. The specimens are designed by the Rayleigh Ritz method to achieve a linear rate of compliance with respect to crack length and are calibrated experimentally and also analytically by the finite element method. Both wood-wood and wood-FRP samples are tested under dry and wet conditions, and bonded interface fracture toughness data under Mode I loading are obtained. The guidelines and procedures for the modeling and design of CDCB specimens for hybrid or dissimilar adherends using a Rayleigh-Ritz model are presented briefly, and a modified Rayleigh-Ritz method is further developed. The effect of moisture on fracture toughness is evaluated, and increases in interface fracture toughness are observed due to moisture absorption for wet wood-wood and wood-FRP samples; the toughening of the interface under moisture is due mainly to a much more plastic fracture failure mode of the interface.","PeriodicalId":8583,"journal":{"name":"ASTM special technical publications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Effect of moisture on fracture toughness of composite/wood bonded interfaces\",\"authors\":\"P. Qiao, J. Davalos, B. Trimble\",\"doi\":\"10.1520/STP14819S\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current research on wood reinforcement has focused on the use of fiber-reinforced plastic (FRP) strips or fabrics bonded to wood members. Although significant increases in stiffness and strength have been achieved by thisreinforcing technique, there is a concern about the reliable performance of the wood-FRP interface bond, which can be susceptible to delamination. The objective of this study is to present a combined analytical/ experimental study to evaluate the effect of moisture on fracture toughness of composite/wood bonded interfaces under Mode I loading. A contoured double cantilever beam (CDCB) specimen is used to characterize the fracture toughness of both wood-wood and wood-FRP samples. The specimens are designed by the Rayleigh Ritz method to achieve a linear rate of compliance with respect to crack length and are calibrated experimentally and also analytically by the finite element method. Both wood-wood and wood-FRP samples are tested under dry and wet conditions, and bonded interface fracture toughness data under Mode I loading are obtained. The guidelines and procedures for the modeling and design of CDCB specimens for hybrid or dissimilar adherends using a Rayleigh-Ritz model are presented briefly, and a modified Rayleigh-Ritz method is further developed. The effect of moisture on fracture toughness is evaluated, and increases in interface fracture toughness are observed due to moisture absorption for wet wood-wood and wood-FRP samples; the toughening of the interface under moisture is due mainly to a much more plastic fracture failure mode of the interface.\",\"PeriodicalId\":8583,\"journal\":{\"name\":\"ASTM special technical publications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASTM special technical publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1520/STP14819S\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASTM special technical publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1520/STP14819S","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of moisture on fracture toughness of composite/wood bonded interfaces
Current research on wood reinforcement has focused on the use of fiber-reinforced plastic (FRP) strips or fabrics bonded to wood members. Although significant increases in stiffness and strength have been achieved by thisreinforcing technique, there is a concern about the reliable performance of the wood-FRP interface bond, which can be susceptible to delamination. The objective of this study is to present a combined analytical/ experimental study to evaluate the effect of moisture on fracture toughness of composite/wood bonded interfaces under Mode I loading. A contoured double cantilever beam (CDCB) specimen is used to characterize the fracture toughness of both wood-wood and wood-FRP samples. The specimens are designed by the Rayleigh Ritz method to achieve a linear rate of compliance with respect to crack length and are calibrated experimentally and also analytically by the finite element method. Both wood-wood and wood-FRP samples are tested under dry and wet conditions, and bonded interface fracture toughness data under Mode I loading are obtained. The guidelines and procedures for the modeling and design of CDCB specimens for hybrid or dissimilar adherends using a Rayleigh-Ritz model are presented briefly, and a modified Rayleigh-Ritz method is further developed. The effect of moisture on fracture toughness is evaluated, and increases in interface fracture toughness are observed due to moisture absorption for wet wood-wood and wood-FRP samples; the toughening of the interface under moisture is due mainly to a much more plastic fracture failure mode of the interface.