{"title":"随机树中点之间的距离","authors":"A. Meir, J.W. Moon","doi":"10.1016/S0021-9800(70)80012-6","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>γ</em> denote the number of points in the path joining two arbitrary points in a random tree <em>T<sub>n</sub></em> with <em>n</em> labeled points. It is shown, among other things, that <em>E(γ)∼(1/2πn)</em><sup>1/2</sup>.</p></div>","PeriodicalId":100765,"journal":{"name":"Journal of Combinatorial Theory","volume":"8 1","pages":"Pages 99-103"},"PeriodicalIF":0.0000,"publicationDate":"1970-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0021-9800(70)80012-6","citationCount":"42","resultStr":"{\"title\":\"The distance between points in random trees\",\"authors\":\"A. Meir, J.W. Moon\",\"doi\":\"10.1016/S0021-9800(70)80012-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <em>γ</em> denote the number of points in the path joining two arbitrary points in a random tree <em>T<sub>n</sub></em> with <em>n</em> labeled points. It is shown, among other things, that <em>E(γ)∼(1/2πn)</em><sup>1/2</sup>.</p></div>\",\"PeriodicalId\":100765,\"journal\":{\"name\":\"Journal of Combinatorial Theory\",\"volume\":\"8 1\",\"pages\":\"Pages 99-103\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1970-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0021-9800(70)80012-6\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021980070800126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021980070800126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Let γ denote the number of points in the path joining two arbitrary points in a random tree Tn with n labeled points. It is shown, among other things, that E(γ)∼(1/2πn)1/2.