参数不确定线性离散系统的鲁棒H∞观测器镇定

C. Bennani, F. Bedouhene, A. Zemouche, H. Bibi, K. C. Draa, A. Aitouche, R. Rajamani
{"title":"参数不确定线性离散系统的鲁棒H∞观测器镇定","authors":"C. Bennani, F. Bedouhene, A. Zemouche, H. Bibi, K. C. Draa, A. Aitouche, R. Rajamani","doi":"10.23919/ACC.2018.8431745","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of observer-based stabilization of discrete-time linear systems in presence of parameter uncertainties and $\\ell_{2}$ -bounded disturbances. We propose a new variant of the classical two-steps LMI approach. In the first step, we use a slack variable technique to solve the optimization problem resulting from the stabilization problem by a static state feedback. In the second step, a part of the slack variable obtained is incorporated in the $\\mathcal{H}_{\\infty}$ observer-based stabilization problem, to calculate simultaneously the Lyapunov matrix and the observer-based controller gains. Numerical evaluation by Monte Carlo is presented to show the superiority of the proposed Modified Two-Steps Method (MTSM) from LMI feasibility point of view.","PeriodicalId":74510,"journal":{"name":"Proceedings of the ... American Control Conference. American Control Conference","volume":"49 1","pages":"4398-4402"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Robust H∞ Observer-Based Stabilization of Linear Discrete-Time Systems with Parameter Uncertaintes\",\"authors\":\"C. Bennani, F. Bedouhene, A. Zemouche, H. Bibi, K. C. Draa, A. Aitouche, R. Rajamani\",\"doi\":\"10.23919/ACC.2018.8431745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the problem of observer-based stabilization of discrete-time linear systems in presence of parameter uncertainties and $\\\\ell_{2}$ -bounded disturbances. We propose a new variant of the classical two-steps LMI approach. In the first step, we use a slack variable technique to solve the optimization problem resulting from the stabilization problem by a static state feedback. In the second step, a part of the slack variable obtained is incorporated in the $\\\\mathcal{H}_{\\\\infty}$ observer-based stabilization problem, to calculate simultaneously the Lyapunov matrix and the observer-based controller gains. Numerical evaluation by Monte Carlo is presented to show the superiority of the proposed Modified Two-Steps Method (MTSM) from LMI feasibility point of view.\",\"PeriodicalId\":74510,\"journal\":{\"name\":\"Proceedings of the ... American Control Conference. American Control Conference\",\"volume\":\"49 1\",\"pages\":\"4398-4402\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... American Control Conference. American Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ACC.2018.8431745\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... American Control Conference. American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC.2018.8431745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

研究了存在参数不确定性和$\ell_{2}$有界扰动的离散线性系统的观测器镇定问题。我们提出了经典的两步LMI方法的一种新变体。在第一步中,我们使用松弛变量技术来解决由静态反馈镇定问题引起的优化问题。第二步,将得到的部分松弛变量纳入$\mathcal{H}_{\infty}$观测器镇定问题,同时计算Lyapunov矩阵和观测器控制器增益。从LMI可行性的角度,用蒙特卡罗方法对所提出的改进两步法进行了数值评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust H∞ Observer-Based Stabilization of Linear Discrete-Time Systems with Parameter Uncertaintes
This paper addresses the problem of observer-based stabilization of discrete-time linear systems in presence of parameter uncertainties and $\ell_{2}$ -bounded disturbances. We propose a new variant of the classical two-steps LMI approach. In the first step, we use a slack variable technique to solve the optimization problem resulting from the stabilization problem by a static state feedback. In the second step, a part of the slack variable obtained is incorporated in the $\mathcal{H}_{\infty}$ observer-based stabilization problem, to calculate simultaneously the Lyapunov matrix and the observer-based controller gains. Numerical evaluation by Monte Carlo is presented to show the superiority of the proposed Modified Two-Steps Method (MTSM) from LMI feasibility point of view.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信