可压缩流的移边多项式修正:使用线性网格的高阶曲面域

M. Ciallella, Elena Gaburro, Marco Lorini, M. Ricchiuto
{"title":"可压缩流的移边多项式修正:使用线性网格的高阶曲面域","authors":"M. Ciallella, Elena Gaburro, Marco Lorini, M. Ricchiuto","doi":"10.48550/arXiv.2209.14892","DOIUrl":null,"url":null,"abstract":"In this work we propose a simple but effective high order polynomial correction allowing to enhance the consistency of all kind of boundary conditions for the Euler equations (Dirichlet, characteristic far-field and slip-wall), both in 2D and 3D, preserving a high order of accuracy without the need of curved meshes. The method proposed is a simplified reformulation of the Shifted Boundary Method (SBM) and relies on a correction based on the extrapolated value of the in cell polynomial to the true geometry, thus not requiring the explicit evaluation of high order Taylor series. Moreover, this strategy could be easily implemented into any already existing finite element and finite volume code. Several validation tests are presented to prove the convergence properties up to order four for 2D and 3D simulations with curved boundaries, as well as an effective extension to flows with shocks.","PeriodicalId":7991,"journal":{"name":"Appl. Math. Comput.","volume":"123 1","pages":"127698"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Shifted boundary polynomial corrections for compressible flows: high order on curved domains using linear meshes\",\"authors\":\"M. Ciallella, Elena Gaburro, Marco Lorini, M. Ricchiuto\",\"doi\":\"10.48550/arXiv.2209.14892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we propose a simple but effective high order polynomial correction allowing to enhance the consistency of all kind of boundary conditions for the Euler equations (Dirichlet, characteristic far-field and slip-wall), both in 2D and 3D, preserving a high order of accuracy without the need of curved meshes. The method proposed is a simplified reformulation of the Shifted Boundary Method (SBM) and relies on a correction based on the extrapolated value of the in cell polynomial to the true geometry, thus not requiring the explicit evaluation of high order Taylor series. Moreover, this strategy could be easily implemented into any already existing finite element and finite volume code. Several validation tests are presented to prove the convergence properties up to order four for 2D and 3D simulations with curved boundaries, as well as an effective extension to flows with shocks.\",\"PeriodicalId\":7991,\"journal\":{\"name\":\"Appl. Math. Comput.\",\"volume\":\"123 1\",\"pages\":\"127698\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Appl. Math. Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2209.14892\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Appl. Math. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2209.14892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在这项工作中,我们提出了一种简单而有效的高阶多项式校正,允许在2D和3D中增强欧拉方程(Dirichlet,特征远场和滑移壁)各种边界条件的一致性,从而在不需要曲面网格的情况下保持高阶精度。该方法是位移边界法(SBM)的简化重新表述,它依赖于基于单元多项式的外推值对真实几何的修正,因此不需要显式地计算高阶泰勒级数。此外,该策略可以很容易地实现到任何已经存在的有限元和有限体积的代码。通过若干验证试验,证明了该方法在二维和三维曲面边界模拟中的收敛性可达4阶,并对激波流动进行了有效推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shifted boundary polynomial corrections for compressible flows: high order on curved domains using linear meshes
In this work we propose a simple but effective high order polynomial correction allowing to enhance the consistency of all kind of boundary conditions for the Euler equations (Dirichlet, characteristic far-field and slip-wall), both in 2D and 3D, preserving a high order of accuracy without the need of curved meshes. The method proposed is a simplified reformulation of the Shifted Boundary Method (SBM) and relies on a correction based on the extrapolated value of the in cell polynomial to the true geometry, thus not requiring the explicit evaluation of high order Taylor series. Moreover, this strategy could be easily implemented into any already existing finite element and finite volume code. Several validation tests are presented to prove the convergence properties up to order four for 2D and 3D simulations with curved boundaries, as well as an effective extension to flows with shocks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信