具有反射边的立方体扩散混合的特征时间

G. Tsitsiashvili
{"title":"具有反射边的立方体扩散混合的特征时间","authors":"G. Tsitsiashvili","doi":"10.11648/J.AJMP.20170605.11","DOIUrl":null,"url":null,"abstract":"V. V. Uchaikin suggested a mathematical model of an anomalous diffusion in a space. These model origins in an investigation of processes in complex systems with variable structure: glasses, liquid crystals, biopolymers, proteins and a turbulence in a plasma. Here a coordinate of diffusing particle has stable distribution and so its density satisfies diffusion equation with partial derivatives. In this paper, the anomalous diffusion with periodic initial conditions on an interval with reflecting edges, important for example in technical mechanics, is considered and analyzed.","PeriodicalId":7717,"journal":{"name":"American Journal of Modern Physics","volume":"29 1","pages":"81"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Characteristic Time of Diffusive Mixing in Cube with Reflecting Edges\",\"authors\":\"G. Tsitsiashvili\",\"doi\":\"10.11648/J.AJMP.20170605.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"V. V. Uchaikin suggested a mathematical model of an anomalous diffusion in a space. These model origins in an investigation of processes in complex systems with variable structure: glasses, liquid crystals, biopolymers, proteins and a turbulence in a plasma. Here a coordinate of diffusing particle has stable distribution and so its density satisfies diffusion equation with partial derivatives. In this paper, the anomalous diffusion with periodic initial conditions on an interval with reflecting edges, important for example in technical mechanics, is considered and analyzed.\",\"PeriodicalId\":7717,\"journal\":{\"name\":\"American Journal of Modern Physics\",\"volume\":\"29 1\",\"pages\":\"81\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Modern Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.AJMP.20170605.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Modern Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.AJMP.20170605.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

乌查金提出了一个空间中反常扩散的数学模型。这些模型起源于对具有可变结构的复杂系统过程的研究:玻璃、液晶、生物聚合物、蛋白质和等离子体中的湍流。这里扩散粒子的坐标具有稳定的分布,因此其密度满足带偏导数的扩散方程。本文考虑并分析了具有反射边区间上具有周期初始条件的异常扩散问题,这在技术力学中是很重要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characteristic Time of Diffusive Mixing in Cube with Reflecting Edges
V. V. Uchaikin suggested a mathematical model of an anomalous diffusion in a space. These model origins in an investigation of processes in complex systems with variable structure: glasses, liquid crystals, biopolymers, proteins and a turbulence in a plasma. Here a coordinate of diffusing particle has stable distribution and so its density satisfies diffusion equation with partial derivatives. In this paper, the anomalous diffusion with periodic initial conditions on an interval with reflecting edges, important for example in technical mechanics, is considered and analyzed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信