Yousef Kassem, H. Gökçekuş, A. Iravanian, M. Nategh
{"title":"FMEA方法在Amirkabir大坝环境风险评价中的意义","authors":"Yousef Kassem, H. Gökçekuş, A. Iravanian, M. Nategh","doi":"10.2478/rtuect-2022-0074","DOIUrl":null,"url":null,"abstract":"Abstract There are various environmental risks in both the construction and operation phases of huge civil projects such as dam construction. As a result, it is critical to implement appropriate risk control and risk mitigation measures before the initiation of the activities posed by these schemes. The goal of this research is to identify and categorize the environmental risks posed by the Amirkabir Dam during its construction and operation phases. After identifying the risks, the risk factors were prioritized using the FMEA method, with the risks being ranked according to their severity, probability of occurrence, and ability to detect. The study’s findings revealed that the highest risk in the dam construction stage is associated with road construction and vehicle exhaust gases (RPNs of 280 and 252, respectively), and the highest risk in the operation phase is associated with borrow area overuse (erosion and sediment downstream of the dam) (RPN of 280).","PeriodicalId":46053,"journal":{"name":"Environmental and Climate Technologies","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implications of the FMEA Method in Evaluating Amirkabir Dam’s Environmental Risk\",\"authors\":\"Yousef Kassem, H. Gökçekuş, A. Iravanian, M. Nategh\",\"doi\":\"10.2478/rtuect-2022-0074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract There are various environmental risks in both the construction and operation phases of huge civil projects such as dam construction. As a result, it is critical to implement appropriate risk control and risk mitigation measures before the initiation of the activities posed by these schemes. The goal of this research is to identify and categorize the environmental risks posed by the Amirkabir Dam during its construction and operation phases. After identifying the risks, the risk factors were prioritized using the FMEA method, with the risks being ranked according to their severity, probability of occurrence, and ability to detect. The study’s findings revealed that the highest risk in the dam construction stage is associated with road construction and vehicle exhaust gases (RPNs of 280 and 252, respectively), and the highest risk in the operation phase is associated with borrow area overuse (erosion and sediment downstream of the dam) (RPN of 280).\",\"PeriodicalId\":46053,\"journal\":{\"name\":\"Environmental and Climate Technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental and Climate Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/rtuect-2022-0074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Climate Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/rtuect-2022-0074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Implications of the FMEA Method in Evaluating Amirkabir Dam’s Environmental Risk
Abstract There are various environmental risks in both the construction and operation phases of huge civil projects such as dam construction. As a result, it is critical to implement appropriate risk control and risk mitigation measures before the initiation of the activities posed by these schemes. The goal of this research is to identify and categorize the environmental risks posed by the Amirkabir Dam during its construction and operation phases. After identifying the risks, the risk factors were prioritized using the FMEA method, with the risks being ranked according to their severity, probability of occurrence, and ability to detect. The study’s findings revealed that the highest risk in the dam construction stage is associated with road construction and vehicle exhaust gases (RPNs of 280 and 252, respectively), and the highest risk in the operation phase is associated with borrow area overuse (erosion and sediment downstream of the dam) (RPN of 280).
期刊介绍:
Environmental and Climate Technologies provides a forum for information on innovation, research and development in the areas of environmental science, energy resources and processes, innovative technologies and energy efficiency. Authors are encouraged to submit manuscripts which cover the range from bioeconomy, sustainable technology development, life cycle analysis, eco-design, climate change mitigation, innovative solutions for pollution reduction to resilience, the energy efficiency of buildings, secure and sustainable energy supplies. The Journal ensures international publicity for original research and innovative work. A variety of themes are covered through a multi-disciplinary approach, one which integrates all aspects of environmental science: -Sustainability of technology development- Bioeconomy- Cleaner production, end of pipe production- Zero emission technologies- Eco-design- Life cycle analysis- Eco-efficiency- Environmental impact assessment- Environmental management systems- Resilience- Energy and carbon markets- Greenhouse gas emission reduction and climate technologies- Methodologies for the evaluation of sustainability- Renewable energy resources- Solar, wind, geothermal, hydro energy, biomass sources: algae, wood, straw, biogas, energetic plants and organic waste- Waste management- Quality of outdoor and indoor environment- Environmental monitoring and evaluation- Heat and power generation, including district heating and/or cooling- Energy efficiency.