Yen-Cheng Liu, Wei-Chen Chiu, Sheng-De Wang, Y. Wang
{"title":"领域自适应生成对抗网络用于草图到照片的反演","authors":"Yen-Cheng Liu, Wei-Chen Chiu, Sheng-De Wang, Y. Wang","doi":"10.1109/MLSP.2017.8168181","DOIUrl":null,"url":null,"abstract":"Generating photo-realistic images from multiple style sketches is one of challenging tasks in image synthesis with important applications such as facial composite for suspects. While machine learning techniques have been applied for solving this problem, the requirement of collecting sketch and face photo image pairs would limit the use of the learned model for rendering sketches of different styles. In this paper, we propose a novel deep learning model of Domain-adaptive Generative Adversarial Networks (DA-GAN). The design of DA-GAN performs cross-style sketch-to-photo inversion, which mitigates the difference across input sketch styles without the need to collect a large number of sketch and face image pairs for training purposes. In experiments, we show that our method is able to produce satisfactory results as well as performing favorably against state-of-the-art approaches.","PeriodicalId":6542,"journal":{"name":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","volume":"6 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Domain-Adaptive generative adversarial networks for sketch-to-photo inversion\",\"authors\":\"Yen-Cheng Liu, Wei-Chen Chiu, Sheng-De Wang, Y. Wang\",\"doi\":\"10.1109/MLSP.2017.8168181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generating photo-realistic images from multiple style sketches is one of challenging tasks in image synthesis with important applications such as facial composite for suspects. While machine learning techniques have been applied for solving this problem, the requirement of collecting sketch and face photo image pairs would limit the use of the learned model for rendering sketches of different styles. In this paper, we propose a novel deep learning model of Domain-adaptive Generative Adversarial Networks (DA-GAN). The design of DA-GAN performs cross-style sketch-to-photo inversion, which mitigates the difference across input sketch styles without the need to collect a large number of sketch and face image pairs for training purposes. In experiments, we show that our method is able to produce satisfactory results as well as performing favorably against state-of-the-art approaches.\",\"PeriodicalId\":6542,\"journal\":{\"name\":\"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)\",\"volume\":\"6 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MLSP.2017.8168181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2017.8168181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Domain-Adaptive generative adversarial networks for sketch-to-photo inversion
Generating photo-realistic images from multiple style sketches is one of challenging tasks in image synthesis with important applications such as facial composite for suspects. While machine learning techniques have been applied for solving this problem, the requirement of collecting sketch and face photo image pairs would limit the use of the learned model for rendering sketches of different styles. In this paper, we propose a novel deep learning model of Domain-adaptive Generative Adversarial Networks (DA-GAN). The design of DA-GAN performs cross-style sketch-to-photo inversion, which mitigates the difference across input sketch styles without the need to collect a large number of sketch and face image pairs for training purposes. In experiments, we show that our method is able to produce satisfactory results as well as performing favorably against state-of-the-art approaches.