{"title":"花岗岩废弃物中重金属去除的电动力学数值实现","authors":"K. R. Gujjula, V. N. Reddy","doi":"10.30492/IJCCE.2021.130971.4231","DOIUrl":null,"url":null,"abstract":"The goal of the study is to incorporate the electrokinetic models and estimate the remediation time for maximum removal of heavy metals (HMs) from polluted soils. Most of the conventional electrokinetic technologies have not considered the electrokinetic models in the removal of HMs from polluted soils. We addressed this problem and incorporated the electrokinetics and applied for experimental Electrokinetic Soil Remediation (EKSR) process particularly, to extract the numerical data between removal performance of HMs versus remediation time with help of the MATLAB program. In the experimental study, chelating chemical agents (citric acid and ethylenediaminetetraacetic acid (EDTA)) were used in EKSR process under constant voltage gradient (2V/cm) for the removal of Chromium (Cr), Cobalt (Co), Nickel (Ni), Copper (Cu), Zinc (Zn) and Manganese (Mn) ions from granite dump soil. We experimentally investigated that the removal performance of HMs in chelating agents enhanced EKSR were about 6 to7 times more than when unenhanced in 20 days of treatment. Furthermore, we estimated the remediation time about 52 to 54 days for complete removal of HMs using electrokinetic models. The study may be useful for the researcher’s particularly, in the soil decontamination studies to overcome the uncertainty in the process optimization and scale-up the process to the pilot plant and field level.","PeriodicalId":14572,"journal":{"name":"Iranian Journal of Chemistry & Chemical Engineering-international English Edition","volume":"10 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Implementation of Electrokinetics for Removal of Heavy Metals from Granite Waste\",\"authors\":\"K. R. Gujjula, V. N. Reddy\",\"doi\":\"10.30492/IJCCE.2021.130971.4231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of the study is to incorporate the electrokinetic models and estimate the remediation time for maximum removal of heavy metals (HMs) from polluted soils. Most of the conventional electrokinetic technologies have not considered the electrokinetic models in the removal of HMs from polluted soils. We addressed this problem and incorporated the electrokinetics and applied for experimental Electrokinetic Soil Remediation (EKSR) process particularly, to extract the numerical data between removal performance of HMs versus remediation time with help of the MATLAB program. In the experimental study, chelating chemical agents (citric acid and ethylenediaminetetraacetic acid (EDTA)) were used in EKSR process under constant voltage gradient (2V/cm) for the removal of Chromium (Cr), Cobalt (Co), Nickel (Ni), Copper (Cu), Zinc (Zn) and Manganese (Mn) ions from granite dump soil. We experimentally investigated that the removal performance of HMs in chelating agents enhanced EKSR were about 6 to7 times more than when unenhanced in 20 days of treatment. Furthermore, we estimated the remediation time about 52 to 54 days for complete removal of HMs using electrokinetic models. The study may be useful for the researcher’s particularly, in the soil decontamination studies to overcome the uncertainty in the process optimization and scale-up the process to the pilot plant and field level.\",\"PeriodicalId\":14572,\"journal\":{\"name\":\"Iranian Journal of Chemistry & Chemical Engineering-international English Edition\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Chemistry & Chemical Engineering-international English Edition\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.30492/IJCCE.2021.130971.4231\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Chemistry & Chemical Engineering-international English Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.30492/IJCCE.2021.130971.4231","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Numerical Implementation of Electrokinetics for Removal of Heavy Metals from Granite Waste
The goal of the study is to incorporate the electrokinetic models and estimate the remediation time for maximum removal of heavy metals (HMs) from polluted soils. Most of the conventional electrokinetic technologies have not considered the electrokinetic models in the removal of HMs from polluted soils. We addressed this problem and incorporated the electrokinetics and applied for experimental Electrokinetic Soil Remediation (EKSR) process particularly, to extract the numerical data between removal performance of HMs versus remediation time with help of the MATLAB program. In the experimental study, chelating chemical agents (citric acid and ethylenediaminetetraacetic acid (EDTA)) were used in EKSR process under constant voltage gradient (2V/cm) for the removal of Chromium (Cr), Cobalt (Co), Nickel (Ni), Copper (Cu), Zinc (Zn) and Manganese (Mn) ions from granite dump soil. We experimentally investigated that the removal performance of HMs in chelating agents enhanced EKSR were about 6 to7 times more than when unenhanced in 20 days of treatment. Furthermore, we estimated the remediation time about 52 to 54 days for complete removal of HMs using electrokinetic models. The study may be useful for the researcher’s particularly, in the soil decontamination studies to overcome the uncertainty in the process optimization and scale-up the process to the pilot plant and field level.
期刊介绍:
The aim of the Iranian Journal of Chemistry and Chemical Engineering is to foster the growth of educational, scientific and Industrial Research activities among chemists and chemical engineers and to provide a medium for mutual communication and relations between Iranian academia and the industry on the one hand, and the world the scientific community on the other.