{"title":"绕过动力系统:获得Weierstrass函数图的盒计数维数的简单方法","authors":"Claire David","doi":"10.15673/TMGC.V11I2.1028","DOIUrl":null,"url":null,"abstract":"In the following, bypassing dynamical systems tools, we propose a simple means of computing the box dimension of the graph of the classical Weierstrass function defined, for any real number~$x$, by\\[{\\mathcal W}(x)= \\sum_{n=0}^{+\\infty} \\lambda^n\\,\\cos \\left ( 2\\, \\pi\\,N_b^n\\,x \\right),\\]where $\\lambda$ and $N_b$ are two real numbers such that $0 <\\lambda<1$, $N_b\\,\\in\\,\\N$ and $\\lambda\\,N_b >1$, using a sequence a graphs that approximate the studied one.","PeriodicalId":36547,"journal":{"name":"Proceedings of the International Geometry Center","volume":"15 11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Bypassing dynamical systems: a simple way to get the box-counting dimension of the graph of the Weierstrass function\",\"authors\":\"Claire David\",\"doi\":\"10.15673/TMGC.V11I2.1028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the following, bypassing dynamical systems tools, we propose a simple means of computing the box dimension of the graph of the classical Weierstrass function defined, for any real number~$x$, by\\\\[{\\\\mathcal W}(x)= \\\\sum_{n=0}^{+\\\\infty} \\\\lambda^n\\\\,\\\\cos \\\\left ( 2\\\\, \\\\pi\\\\,N_b^n\\\\,x \\\\right),\\\\]where $\\\\lambda$ and $N_b$ are two real numbers such that $0 <\\\\lambda<1$, $N_b\\\\,\\\\in\\\\,\\\\N$ and $\\\\lambda\\\\,N_b >1$, using a sequence a graphs that approximate the studied one.\",\"PeriodicalId\":36547,\"journal\":{\"name\":\"Proceedings of the International Geometry Center\",\"volume\":\"15 11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Geometry Center\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15673/TMGC.V11I2.1028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Geometry Center","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15673/TMGC.V11I2.1028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Bypassing dynamical systems: a simple way to get the box-counting dimension of the graph of the Weierstrass function
In the following, bypassing dynamical systems tools, we propose a simple means of computing the box dimension of the graph of the classical Weierstrass function defined, for any real number~$x$, by\[{\mathcal W}(x)= \sum_{n=0}^{+\infty} \lambda^n\,\cos \left ( 2\, \pi\,N_b^n\,x \right),\]where $\lambda$ and $N_b$ are two real numbers such that $0 <\lambda<1$, $N_b\,\in\,\N$ and $\lambda\,N_b >1$, using a sequence a graphs that approximate the studied one.