{"title":"经典和分数拉格朗日微分方程公式的对称性考虑","authors":"Uchechukwu Opara, F. Arunaye","doi":"10.28919/jmcs/6994","DOIUrl":null,"url":null,"abstract":"unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract. The utility of Noether’s classical theorem on differential equations extended to a generalized nonclassical theorem is the focus of this paper. After addressing a couple of standard related Partial Differential Equation (P.D.E.) formulations from classical Lagrangians, it culminates into a non-classical formulation of the diffusion equation in one spatial dimension from a fractional Lagrangian. Comparisons and contrasts between techniques for the classical and fractional formulations, as done here, facilitate the basic computational methods required for building analytical results. A noteworthy interface between Distribution theory, Trace theory and Lie symmetry theory is a key point of interest in this study.","PeriodicalId":36607,"journal":{"name":"Journal of Mathematical and Computational Science","volume":"15 10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symmetry considerations for differential equation formulations from classical and fractional Lagrangians\",\"authors\":\"Uchechukwu Opara, F. Arunaye\",\"doi\":\"10.28919/jmcs/6994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract. The utility of Noether’s classical theorem on differential equations extended to a generalized nonclassical theorem is the focus of this paper. After addressing a couple of standard related Partial Differential Equation (P.D.E.) formulations from classical Lagrangians, it culminates into a non-classical formulation of the diffusion equation in one spatial dimension from a fractional Lagrangian. Comparisons and contrasts between techniques for the classical and fractional formulations, as done here, facilitate the basic computational methods required for building analytical results. A noteworthy interface between Distribution theory, Trace theory and Lie symmetry theory is a key point of interest in this study.\",\"PeriodicalId\":36607,\"journal\":{\"name\":\"Journal of Mathematical and Computational Science\",\"volume\":\"15 10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical and Computational Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28919/jmcs/6994\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical and Computational Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28919/jmcs/6994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
Symmetry considerations for differential equation formulations from classical and fractional Lagrangians
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract. The utility of Noether’s classical theorem on differential equations extended to a generalized nonclassical theorem is the focus of this paper. After addressing a couple of standard related Partial Differential Equation (P.D.E.) formulations from classical Lagrangians, it culminates into a non-classical formulation of the diffusion equation in one spatial dimension from a fractional Lagrangian. Comparisons and contrasts between techniques for the classical and fractional formulations, as done here, facilitate the basic computational methods required for building analytical results. A noteworthy interface between Distribution theory, Trace theory and Lie symmetry theory is a key point of interest in this study.