主动振动抑制在多驱动器:数据驱动的方法

IF 1 Q4 AUTOMATION & CONTROL SYSTEMS
Prateek Shah, R. Horowitz
{"title":"主动振动抑制在多驱动器:数据驱动的方法","authors":"Prateek Shah, R. Horowitz","doi":"10.1115/dscc2019-8983","DOIUrl":null,"url":null,"abstract":"\n Multi Actuator Technology was unveiled in December 2017 by Seagate, a breakthrough that can double the data performance of the future generation hard disk drives. This technology will equip drives with dual actuators operating on the same pivot point. Each actuator will control half of the drives arms.\n This new technology brings new control challenges with it. Since two actuators operate independently on the same pivot timber, the control forces and torques generated by one actuator can affect the operation of the other actuator. The independent functioning of the two actuators will lead to a scenario of one actuator in the track seeking mode while the other actuator is in the track following mode. It is expected that the track seeking actuator will impart vibration onto the track following actuator, worsening its performance drastically.\n In this paper, we propose a methodology to estimate this imparted vibration and to design feedforward controllers for the voice coil motor and the micro actuator, of the track following actuator, to suppress the estimated vibration. The vibration estimation is performed using power spectral factorization techniques. Whereas, the feedforward controllers are designed using a mixed H2 – H∞ data driven methodology to obtain a robust design.","PeriodicalId":41412,"journal":{"name":"Mechatronic Systems and Control","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2019-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Active Vibration Rejection in Multi Actuator Drives: Data Driven Approach\",\"authors\":\"Prateek Shah, R. Horowitz\",\"doi\":\"10.1115/dscc2019-8983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Multi Actuator Technology was unveiled in December 2017 by Seagate, a breakthrough that can double the data performance of the future generation hard disk drives. This technology will equip drives with dual actuators operating on the same pivot point. Each actuator will control half of the drives arms.\\n This new technology brings new control challenges with it. Since two actuators operate independently on the same pivot timber, the control forces and torques generated by one actuator can affect the operation of the other actuator. The independent functioning of the two actuators will lead to a scenario of one actuator in the track seeking mode while the other actuator is in the track following mode. It is expected that the track seeking actuator will impart vibration onto the track following actuator, worsening its performance drastically.\\n In this paper, we propose a methodology to estimate this imparted vibration and to design feedforward controllers for the voice coil motor and the micro actuator, of the track following actuator, to suppress the estimated vibration. The vibration estimation is performed using power spectral factorization techniques. Whereas, the feedforward controllers are designed using a mixed H2 – H∞ data driven methodology to obtain a robust design.\",\"PeriodicalId\":41412,\"journal\":{\"name\":\"Mechatronic Systems and Control\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2019-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechatronic Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/dscc2019-8983\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronic Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/dscc2019-8983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 7

摘要

希捷于2017年12月推出了Multi - Actuator Technology,这是一项突破,可以将下一代硬盘驱动器的数据性能提高一倍。该技术将为驱动器配备在同一枢轴点上运行的双致动器。每个驱动器将控制驱动器臂的一半。这种新技术带来了新的控制挑战。由于两个致动器在同一枢轴木材上独立运行,一个致动器产生的控制力和扭矩会影响另一个致动器的运行。两个作动器的独立工作将导致一个作动器处于寻迹模式,而另一个作动器处于跟踪模式。跟踪作动器将振动传递给跟踪作动器,使跟踪作动器的性能急剧恶化。在本文中,我们提出了一种估计这种传递振动的方法,并为音圈电机和微致动器设计了前馈控制器,以抑制估计的振动。使用功率谱分解技术进行振动估计。采用混合H2 - H∞数据驱动方法设计前馈控制器,实现鲁棒性设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Active Vibration Rejection in Multi Actuator Drives: Data Driven Approach
Multi Actuator Technology was unveiled in December 2017 by Seagate, a breakthrough that can double the data performance of the future generation hard disk drives. This technology will equip drives with dual actuators operating on the same pivot point. Each actuator will control half of the drives arms. This new technology brings new control challenges with it. Since two actuators operate independently on the same pivot timber, the control forces and torques generated by one actuator can affect the operation of the other actuator. The independent functioning of the two actuators will lead to a scenario of one actuator in the track seeking mode while the other actuator is in the track following mode. It is expected that the track seeking actuator will impart vibration onto the track following actuator, worsening its performance drastically. In this paper, we propose a methodology to estimate this imparted vibration and to design feedforward controllers for the voice coil motor and the micro actuator, of the track following actuator, to suppress the estimated vibration. The vibration estimation is performed using power spectral factorization techniques. Whereas, the feedforward controllers are designed using a mixed H2 – H∞ data driven methodology to obtain a robust design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mechatronic Systems and Control
Mechatronic Systems and Control AUTOMATION & CONTROL SYSTEMS-
CiteScore
1.40
自引率
66.70%
发文量
27
期刊介绍: This international journal publishes both theoretical and application-oriented papers on various aspects of mechatronic systems, modelling, design, conventional and intelligent control, and intelligent systems. Application areas of mechatronics may include robotics, transportation, energy systems, manufacturing, sensors, actuators, and automation. Techniques of artificial intelligence may include soft computing (fuzzy logic, neural networks, genetic algorithms/evolutionary computing, probabilistic methods, etc.). Techniques may cover frequency and time domains, linear and nonlinear systems, and deterministic and stochastic processes. Hybrid techniques of mechatronics that combine conventional and intelligent methods are also included. First published in 1972, this journal originated with an emphasis on conventional control systems and computer-based applications. Subsequently, with rapid advances in the field and in view of the widespread interest and application of soft computing in control systems, this latter aspect was integrated into the journal. Now the area of mechatronics is included as the main focus. A unique feature of the journal is its pioneering role in bridging the gap between conventional systems and intelligent systems, with an equal emphasis on theory and practical applications, including system modelling, design and instrumentation. It appears four times per year.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信