{"title":"电子竞技《dota2》的贝叶斯调整正负分析","authors":"Nicholas J. Clark, Brian Macdonald, Ian Kloo","doi":"10.1515/jqas-2019-0103","DOIUrl":null,"url":null,"abstract":"Abstract Analytics and professional sports have become linked over the past several years, but little attention has been paid to the growing field of esports within the sports analytics community. We seek to apply an Adjusted Plus Minus (APM) model, an accepted analytic approach used in traditional sports like hockey and basketball, to one particular esports game: Defense of the Ancients 2 (Dota 2). As with traditional sports, we show how APM metrics developed with Bayesian hierarchical regression can be used to quantify individual player contributions to their teams and, ultimately, use this player-level information to predict game outcomes. In particular, we first provide evidence that gold can be used as a continuous proxy for wins to evaluate a team’s performance, and then use a Bayesian APM model to estimate how players contribute to their team’s gold differential. We demonstrate that this APM model outperforms models based on common team-level statistics (often referred to as “box score statistics”). Beyond the specifics of our modeling approach, this paper serves as an example of the potential utility of applying analytical methodologies from traditional sports analytics to esports.","PeriodicalId":16925,"journal":{"name":"Journal of Quantitative Analysis in Sports","volume":"28 1","pages":"325 - 341"},"PeriodicalIF":1.1000,"publicationDate":"2020-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Bayesian adjusted plus-minus analysis for the esport Dota 2\",\"authors\":\"Nicholas J. Clark, Brian Macdonald, Ian Kloo\",\"doi\":\"10.1515/jqas-2019-0103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Analytics and professional sports have become linked over the past several years, but little attention has been paid to the growing field of esports within the sports analytics community. We seek to apply an Adjusted Plus Minus (APM) model, an accepted analytic approach used in traditional sports like hockey and basketball, to one particular esports game: Defense of the Ancients 2 (Dota 2). As with traditional sports, we show how APM metrics developed with Bayesian hierarchical regression can be used to quantify individual player contributions to their teams and, ultimately, use this player-level information to predict game outcomes. In particular, we first provide evidence that gold can be used as a continuous proxy for wins to evaluate a team’s performance, and then use a Bayesian APM model to estimate how players contribute to their team’s gold differential. We demonstrate that this APM model outperforms models based on common team-level statistics (often referred to as “box score statistics”). Beyond the specifics of our modeling approach, this paper serves as an example of the potential utility of applying analytical methodologies from traditional sports analytics to esports.\",\"PeriodicalId\":16925,\"journal\":{\"name\":\"Journal of Quantitative Analysis in Sports\",\"volume\":\"28 1\",\"pages\":\"325 - 341\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Quantitative Analysis in Sports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jqas-2019-0103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"SOCIAL SCIENCES, MATHEMATICAL METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quantitative Analysis in Sports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jqas-2019-0103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 5
摘要
在过去的几年里,分析学和职业体育联系在一起,但在体育分析界,很少有人关注电子竞技领域的发展。我们试图将调整正负(APM)模型应用于一款特定的电子竞技游戏:《Defense of the Ancients 2》(Dota 2),这是一种传统体育项目(如曲棍球和篮球)中使用的公认分析方法。与传统体育项目一样,我们展示了如何使用贝叶斯层次回归开发APM指标来量化个人玩家对团队的贡献,并最终使用这些玩家级别的信息来预测游戏结果。特别是,我们首先提供了证据,证明金牌数可以作为衡量球队表现的连续指标,然后使用贝叶斯APM模型来估计球员对球队金牌数差异的贡献。我们证明了这个APM模型优于基于普通团队级别统计(通常称为“框得分统计”)的模型。除了我们的建模方法的细节之外,本文还作为将传统体育分析的分析方法应用于电子竞技的潜在效用的一个例子。
A Bayesian adjusted plus-minus analysis for the esport Dota 2
Abstract Analytics and professional sports have become linked over the past several years, but little attention has been paid to the growing field of esports within the sports analytics community. We seek to apply an Adjusted Plus Minus (APM) model, an accepted analytic approach used in traditional sports like hockey and basketball, to one particular esports game: Defense of the Ancients 2 (Dota 2). As with traditional sports, we show how APM metrics developed with Bayesian hierarchical regression can be used to quantify individual player contributions to their teams and, ultimately, use this player-level information to predict game outcomes. In particular, we first provide evidence that gold can be used as a continuous proxy for wins to evaluate a team’s performance, and then use a Bayesian APM model to estimate how players contribute to their team’s gold differential. We demonstrate that this APM model outperforms models based on common team-level statistics (often referred to as “box score statistics”). Beyond the specifics of our modeling approach, this paper serves as an example of the potential utility of applying analytical methodologies from traditional sports analytics to esports.
期刊介绍:
The Journal of Quantitative Analysis in Sports (JQAS), an official journal of the American Statistical Association, publishes timely, high-quality peer-reviewed research on the quantitative aspects of professional and amateur sports, including collegiate and Olympic competition. The scope of application reflects the increasing demand for novel methods to analyze and understand data in the growing field of sports analytics. Articles come from a wide variety of sports and diverse perspectives, and address topics such as game outcome models, measurement and evaluation of player performance, tournament structure, analysis of rules and adjudication, within-game strategy, analysis of sporting technologies, and player and team ranking methods. JQAS seeks to publish manuscripts that demonstrate original ways of approaching problems, develop cutting edge methods, and apply innovative thinking to solve difficult challenges in sports contexts. JQAS brings together researchers from various disciplines, including statistics, operations research, machine learning, scientific computing, econometrics, and sports management.