随机分形及其与获胜集的交集

IF 0.6 3区 数学 Q3 MATHEMATICS
Yiftach Dayan
{"title":"随机分形及其与获胜集的交集","authors":"Yiftach Dayan","doi":"10.1017/S0305004121000360","DOIUrl":null,"url":null,"abstract":"\n We show that fractal percolation sets in \n \n \n $\\mathbb{R}^{d}$\n \n almost surely intersect every hyperplane absolutely winning (HAW) set with full Hausdorff dimension. In particular, if \n \n \n $E\\subset\\mathbb{R}^{d}$\n \n is a realisation of a fractal percolation process, then almost surely (conditioned on \n \n \n $E\\neq\\emptyset$\n \n ), for every countable collection \n \n \n $\\left(f_{i}\\right)_{i\\in\\mathbb{N}}$\n \n of \n \n \n $C^{1}$\n \n diffeomorphisms of \n \n \n $\\mathbb{R}^{d}$\n \n , \n \n \n $\\dim_{H}\\left(E\\cap\\left(\\bigcap_{i\\in\\mathbb{N}}f_{i}\\left(\\text{BA}_{d}\\right)\\right)\\right)=\\dim_{H}\\left(E\\right)$\n \n , where \n \n \n $\\text{BA}_{d}$\n \n is the set of badly approximable vectors in \n \n \n $\\mathbb{R}^{d}$\n \n . We show this by proving that E almost surely contains hyperplane diffuse subsets which are Ahlfors-regular with dimensions arbitrarily close to \n \n \n $\\dim_{H}\\left(E\\right)$\n \n .\n We achieve this by analysing Galton–Watson trees and showing that they almost surely contain appropriate subtrees whose projections to \n \n \n $\\mathbb{R}^{d}$\n \n yield the aforementioned subsets of E. This method allows us to obtain a more general result by projecting the Galton–Watson trees against any similarity IFS whose attractor is not contained in a single affine hyperplane. Thus our general result relates to a broader class of random fractals than fractal percolation.","PeriodicalId":18320,"journal":{"name":"Mathematical Proceedings of the Cambridge Philosophical Society","volume":"94 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Random fractals and their intersection with winning sets\",\"authors\":\"Yiftach Dayan\",\"doi\":\"10.1017/S0305004121000360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We show that fractal percolation sets in \\n \\n \\n $\\\\mathbb{R}^{d}$\\n \\n almost surely intersect every hyperplane absolutely winning (HAW) set with full Hausdorff dimension. In particular, if \\n \\n \\n $E\\\\subset\\\\mathbb{R}^{d}$\\n \\n is a realisation of a fractal percolation process, then almost surely (conditioned on \\n \\n \\n $E\\\\neq\\\\emptyset$\\n \\n ), for every countable collection \\n \\n \\n $\\\\left(f_{i}\\\\right)_{i\\\\in\\\\mathbb{N}}$\\n \\n of \\n \\n \\n $C^{1}$\\n \\n diffeomorphisms of \\n \\n \\n $\\\\mathbb{R}^{d}$\\n \\n , \\n \\n \\n $\\\\dim_{H}\\\\left(E\\\\cap\\\\left(\\\\bigcap_{i\\\\in\\\\mathbb{N}}f_{i}\\\\left(\\\\text{BA}_{d}\\\\right)\\\\right)\\\\right)=\\\\dim_{H}\\\\left(E\\\\right)$\\n \\n , where \\n \\n \\n $\\\\text{BA}_{d}$\\n \\n is the set of badly approximable vectors in \\n \\n \\n $\\\\mathbb{R}^{d}$\\n \\n . We show this by proving that E almost surely contains hyperplane diffuse subsets which are Ahlfors-regular with dimensions arbitrarily close to \\n \\n \\n $\\\\dim_{H}\\\\left(E\\\\right)$\\n \\n .\\n We achieve this by analysing Galton–Watson trees and showing that they almost surely contain appropriate subtrees whose projections to \\n \\n \\n $\\\\mathbb{R}^{d}$\\n \\n yield the aforementioned subsets of E. This method allows us to obtain a more general result by projecting the Galton–Watson trees against any similarity IFS whose attractor is not contained in a single affine hyperplane. Thus our general result relates to a broader class of random fractals than fractal percolation.\",\"PeriodicalId\":18320,\"journal\":{\"name\":\"Mathematical Proceedings of the Cambridge Philosophical Society\",\"volume\":\"94 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Proceedings of the Cambridge Philosophical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/S0305004121000360\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Cambridge Philosophical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0305004121000360","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

我们证明了$\mathbb{R}^{d}$中的分形渗集几乎肯定地与每一个具有满Hausdorff维数的超平面绝对胜利集相交。特别是,如果$E\subset\mathbb{R}^{d}$是一个分形渗透过程的实现,那么几乎可以肯定(以$E\neq\emptyset$为条件),对于$\mathbb{R}^{d}$, $\dim_{H}\left(E\cap\left(\bigcap_{i\in\mathbb{N}}f_{i}\left(\text{BA}_{d}\right)\right)\right)=\dim_{H}\left(E\right)$的$C^{1}$的微分同态的每个可数集合$\left(f_{i}\right)_{i\in\mathbb{N}}$,其中$\text{BA}_{d}$是$\mathbb{R}^{d}$中严重近似向量的集合。我们通过证明E几乎肯定包含维度任意接近$\dim_{H}\left(E\right)$的超平面漫射子集来证明这一点。我们通过分析高尔顿-沃森树来实现这一点,并表明它们几乎肯定包含适当的子树,其投影到$\mathbb{R}^{d}$产生上述e的子集。这种方法允许我们通过将高尔顿-沃森树投影到任何吸引子不包含在单个仿射超平面中的相似IFS来获得更一般的结果。因此,我们的一般结果涉及到比分形渗透更广泛的随机分形类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Random fractals and their intersection with winning sets
We show that fractal percolation sets in $\mathbb{R}^{d}$ almost surely intersect every hyperplane absolutely winning (HAW) set with full Hausdorff dimension. In particular, if $E\subset\mathbb{R}^{d}$ is a realisation of a fractal percolation process, then almost surely (conditioned on $E\neq\emptyset$ ), for every countable collection $\left(f_{i}\right)_{i\in\mathbb{N}}$ of $C^{1}$ diffeomorphisms of $\mathbb{R}^{d}$ , $\dim_{H}\left(E\cap\left(\bigcap_{i\in\mathbb{N}}f_{i}\left(\text{BA}_{d}\right)\right)\right)=\dim_{H}\left(E\right)$ , where $\text{BA}_{d}$ is the set of badly approximable vectors in $\mathbb{R}^{d}$ . We show this by proving that E almost surely contains hyperplane diffuse subsets which are Ahlfors-regular with dimensions arbitrarily close to $\dim_{H}\left(E\right)$ . We achieve this by analysing Galton–Watson trees and showing that they almost surely contain appropriate subtrees whose projections to $\mathbb{R}^{d}$ yield the aforementioned subsets of E. This method allows us to obtain a more general result by projecting the Galton–Watson trees against any similarity IFS whose attractor is not contained in a single affine hyperplane. Thus our general result relates to a broader class of random fractals than fractal percolation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Papers which advance knowledge of mathematics, either pure or applied, will be considered by the Editorial Committee. The work must be original and not submitted to another journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信