采用图像配准方法研究具有非线性惯性权值变化的粒子群优化算法的收敛性

Sanjeev Saxena, M. Pohit
{"title":"采用图像配准方法研究具有非线性惯性权值变化的粒子群优化算法的收敛性","authors":"Sanjeev Saxena, M. Pohit","doi":"10.1109/ICCCNT.2017.8204075","DOIUrl":null,"url":null,"abstract":"Particle swarm optimization (PSO) algorithm is a swarm based metaheuristic method to solve multimodal optimization problems. The inertia weight parameter in the algorithm is very important as it balances the exploration and exploitation of the algorithm. Many variations of the parameter have been reported in the literature where a linearly decreasing inertia weight was found to be the best choice for most of the problems. In this work we have used several non-linear variations in the inertia weight (not used earlier) and developed the algorithm for the image registration problem of two mutually translated images. For each run of the algorithm, the increments of fitness function and hence the convergence of PSO is carefully monitored and compared with standard parameters.","PeriodicalId":6581,"journal":{"name":"2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT)","volume":"11 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An image registration approach to study the convergence of particle swarm optimization algorithm with non-linear inertia weight variation\",\"authors\":\"Sanjeev Saxena, M. Pohit\",\"doi\":\"10.1109/ICCCNT.2017.8204075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Particle swarm optimization (PSO) algorithm is a swarm based metaheuristic method to solve multimodal optimization problems. The inertia weight parameter in the algorithm is very important as it balances the exploration and exploitation of the algorithm. Many variations of the parameter have been reported in the literature where a linearly decreasing inertia weight was found to be the best choice for most of the problems. In this work we have used several non-linear variations in the inertia weight (not used earlier) and developed the algorithm for the image registration problem of two mutually translated images. For each run of the algorithm, the increments of fitness function and hence the convergence of PSO is carefully monitored and compared with standard parameters.\",\"PeriodicalId\":6581,\"journal\":{\"name\":\"2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT)\",\"volume\":\"11 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCNT.2017.8204075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCNT.2017.8204075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

粒子群优化算法(PSO)是一种基于群的求解多模态优化问题的元启发式算法。算法中的惯性权重参数对算法的探索和利用起着重要的平衡作用。文献中已经报道了许多参数的变化,其中线性减小的惯性权重被发现是大多数问题的最佳选择。在这项工作中,我们使用了惯性权重的几种非线性变化(以前没有使用过),并开发了两幅相互翻译图像的图像配准问题的算法。对于算法的每次运行,仔细监测适应度函数的增量以及PSO的收敛性,并与标准参数进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An image registration approach to study the convergence of particle swarm optimization algorithm with non-linear inertia weight variation
Particle swarm optimization (PSO) algorithm is a swarm based metaheuristic method to solve multimodal optimization problems. The inertia weight parameter in the algorithm is very important as it balances the exploration and exploitation of the algorithm. Many variations of the parameter have been reported in the literature where a linearly decreasing inertia weight was found to be the best choice for most of the problems. In this work we have used several non-linear variations in the inertia weight (not used earlier) and developed the algorithm for the image registration problem of two mutually translated images. For each run of the algorithm, the increments of fitness function and hence the convergence of PSO is carefully monitored and compared with standard parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信